
PaperSignals Parameterized

Nao Ouyang
Laura Zharmukhametova
Jamelle Watson-Daniels
nouyang@g.harvard.edu

lzharmukhametova@college.harvard.edu

jwatsondaniels@g.harvard.edu

Figure 1: Building PaperSignals.

ABSTRACT

PaperSignals are build-it-yourself printable robots that a user
can control with their voice. This study presents an open-
source browser-based user interface (written in Python) aimed
at allowing users to easily customize existing Papersignal
templates. The fabrication process is intended to be inex-
pensive and accessible to non-technical experts. The tool
developed in this work allows users to address two major
limitations of PaperSignals templates - change dimensions
and produce template components in svg instead of pdf (a
more usable file format). This work also takes these static
templates, which are not parameterized, and presents a set
of design primitives that would inform a domain specific
language to fully parameterize this work in the future. Our

source code can be found at github and a demo online at
heroku.

1 INTRODUCTION
PaperSignals is an experiment by Google that allows

non-expert users to fabricate functional robots that act as a

tracking device. Users gather a small electronics kit and print

paper templates to ultimately assemble the devices. The elec-

tronic parts shown in 2 can be ordered online from Adafruit

and the template can be downloaded from the website and

printed using a standard inkjet printer.

https://github.com/L-Zharmukhametova/papersignal
http://customPaperSignals.herokuapp.com

PaperSignals Parameterized | 2

Figure 2: Electronic parts to turn the papercraft into robotic
papercraft.

The final PaperSignals devices can be controlled by

voice via Google Assistant. To set it up, the user connects

to it through WiFi and, after some registration steps, con-

figures the device by saying (via e.g. an Android phone)

a phrase such as “Track the weather in Seattle” or “Track

rocket launches in China”. There are currently six templates

available online for users to fabricate these printable robots.

The process can take a few hours to complete once a user

has all of the necessary components. While the user does

not need to be a technical expert, the process does require

some experience with programming if the user would like

to make changes to the templates given.

This project investigates specific limitations of Pa-

perSignals in an effort to improve the user experience by in-

troducing PaperSignals parameretized, and defines a Domain

Specific Language that would facilitate easy configuration of

both the robotics and the template parts of the device. Note

that we do not cover the programming aspects of the design,

unlike other projects, and focus on the paper templating

process and how the use of robotic components can change

the need thesis.

The structure of the paper begins with discussing

the motivation (existing limitations and need thesis) behind

this project, followed by a review of academic literature

and similar interfaces available online. Next, the design and

implementation of this project is covered. The following

section presents an initial draft of a domain-specific language

(DSL) for this project. Finally, we conclude and discuss future

work.

1.1 Limitations of Google PaperSignals

We identified the following limitations of the Pa-

perSignals, through preliminary interviews with Harvard

students specializing in art and papercraft, and building Pa-

perSignals using the provided templates.

• Existing templates are not parametric. It is difficult to

change dimensions.

• Personalized and customized designs are not possible.

• The template file format cannot be modified.

• If a mistake is made during fabrication, the user cannot

undo glued paper without destroying the paper. This

problem is particularly important to robotic papercraft

as it is difficult to debug an opaque box. See Figures 3

and 4.

• The fabrication process can take hours

The core tension is therefore usability and customiz-

ability of existing PaperSignals templates. Consider the lim-

ited template file format. Currently, there are only PDFs

available, which doesn’t allow users to change vectors and

dimensions of shapes relative to one another. Additionally, if

a user wants to use a laser-cutting machine (which is a rea-

sonable expectation for a user with a robotics background),

then alternative file formats are needed. The presented work

evaluates the limitations of PaperSignals templates and of-

fers a customizable option for changing dimensions, thus

PaperSignals Parameterized | 3

Figure 3: Arrow was installed incorrectly onto motor, and as
the screw was inside the box and the template folded and
glued over it, the fix required destructively modifying the
box.

Figure 4: The inside of the pants templates shows the robotic
components that must be debugged.

increasing the customizability and usability of existing Pa-

perSignals templates.

1.2 Need Thesis

The listed limitations imply that Google PaperSignals

could be greatly improved. The first step of defining the

pattern has been taken care of by PaperSignals templates,

but issues ensue when a user attempts to produce a func-

tional robot. One issue is difficulty in specifying parameter

dimensions and updating the PaperSignals templates accord-

ingly. Additionally, when ordering electronic components,

the more affordable options sometimes have different dimen-

sions than the PaperSignals templates. There is no way to

change dimensions just using the standard templates and

source code provided by Google. Our goal is to develop a

parameterized version of one of the PaperSignals templates

to address this end-user problem. In doing so, we create an

open-source software project that can be modified by other

template designers to provide end-users with modifiable tem-

plate designs.

1.3 Academic Literature Overview

What are print-and-fold robots? The term, printable

robots, refers to a robot developed via a three step fabrication

process. First, the user defines the pattern and mechanical

design. Second, the user prints the design and gathers elec-

tronic components. Lastly, the user assembles the robot via

folding and gluing. At the center of this process is folding

which is efficient compared to other available techniques

but not commonly used in engineering and science. Only

requiring folding means the resulting object is compact and

lightweight. Borrowing from the Japanese art of origami, this

print-and-fold process involves printing 2D patterns that can

be folded into functional 3D robots. For a given mechanism,

theoretical analysis is needed in order to first show that it

PaperSignals Parameterized | 4

can in fact be fabricated in this manner [1].

Previouswork has involved foldingmicro/nanostructures

providing a basis for the use of folding in the field of robot-

ics. But there is not much work demonstrating a complete

electro-mechanical system using this approach. Foldable

robots present two critical design challenges: how to identify

foldable 3-D mechanism to achieve desired task and how to

specify a corresponding 2D fold pattern [1].

Why is print-and-fold useful? Robots have a variety

of uses in today’s society with applications in academic re-

search, educational outreach, general household activities,

and more. Yet, if an average person is interested in making

a robot they must overcome significant barriers to design

and manufacture one. Users often need highly specialized

engineering skills in order to build functional robots. Addi-

tionally, tools and software can be quite expensive and time

consuming to use. The few options available are not intu-

itively customizable for the generation of new devices. High

prototyping costs combined with fabrication time illustrate

a need for alternative fabrication techniques and strategies.

Studies on alternative approaches have offered cus-

tomizable fabrication of robots using origami-inspired tech-

niques. Ref [1] proposes printable robots to create electrome-

chanical components that are folded into functional 3-D

machines employing origami-inspired techniques. For an in-

terface example see 5. The study presents the design, fabrica-

tion and test of prototype origami robots to address mobility

and manipulation issues often found when using origami-

inspired approaches. Starting with a parameretized template,

they instantiate devices with performance characteristics

Figure 5: Interface for robot compiler. Source.

optimized for a particular application. In order to demon-

strate the print-and-fold process, they created prototypes

(legged robot and a gripper). They were able to mathemati-

cally compose the 2D patterns for a legged robot and a robotic

gripper into an ant-inspired design. Ultimately, this work

demonstrated that printable prototypes can be designed and

fabricated quickly, at low cost, with a functional end result.

Ref [2] presents a toolbox-like system to simplify and

streamline the design and manufacture of printable robot

bodies. The authors offer designs for origami-inspired struc-

tures that are generated by a collection of Python scripts,

which allow a user to define complex geometries by hierar-

chical composing of simpler building blocks starting from a

library of basic primitives. This study involved developing

a script-based environment to allow users to easily design

and create mechanical bodies for folded plastic robots. This

work makes the approach accessible to a casual hobbyist.

Ref [3] addresses the issue of high prototyping costs

and fabrication time. The authors present a new scripted

design platform and printed folding fabrication process for

https://groups.csail.mit.edu/drl/wiki/index.php?title=Robot_Compiler

PaperSignals Parameterized | 5

Figure 6: A screenshot of the origamiDSL website.

producing mechanical structures. Specifically, this study pro-

duces a lightweight, low cost and rapidly designed and manu-

factured mechanical air vehicle (MAV). This process is better

than other robot design methodologies because it allows

for modular design, requires low cost software, fabricates in

shorter time, produces lighter structures, and enables rapid

iteration (scripted design). This study offers a framework to

design and fabricate simple robots using origami-inspired

methods for sheets of plastic film.

A lot of research has been dedicated to developing ge-

ometry based domain specific languages, and there is clearly

a lot of research on DSLs for robotics. However, we don’t

have many specification instruments, even in theory, that

incorporate both papercraft geometry and robotics.

Thus, [4] demonstrated great progress in develop-

ing a geometry-based domain specific language for specify-

ing origami folds and creases. Their language, OrigamiDSL,

makes use of Huzita–Hatori seven origami axioms [5] that

completely capture all the mathematical rules governing

origami paper folding. A brief example of the DSL can be

found in 6.

Origami robots[6, 7] is a line of research focusing on

the creation of “live” origami. Origami robots autonomously

change shape based on predetermined folds and creases. As-

sembling such robots requires a lot of expertise, and param-

eratizing them is a similar challenge to ours. Thus, if we

develop a language for designing and parameratizing Pa-

perSignals, it might be useful for systems like origami robot-

ics.

1.4 Software Prior Art

Much online prior art exists, as papercraft generation is not

a new topic. The prior art can be delineated into a few broad

categories. The commercial prior art focuses on "die cut

patterns." These are, for instance, the designs used to cut out

cardboard in such a way that can be shipped flat and then

assembled into a box (or other shape).

2 PROTOTYPE: PAPERSIGNALS
PARAMERETIZED

2.1 Design Principles

The ultimate goal is to enable personal robotics users

to complete the fabrication process with better usability and

customizability. Therefore, the presented interface must be

usable by those with and without a background in engineer-

ing design. With this in mind, the Parametrize PaperSignals

interface was developed with a number of guiding principles.

First and foremost, the interface environment must

be intuitive so that users are able to easily understand navi-

gation and implement desired changes.

Ideally, what is displayed on the screen should be di-

rectly equivalent to the specifications made by the user. The

designs generated by the interface must adequately display

updates to the user as specifications change.

Additionally, the end-user should not be required to

modify the source code in order to customize the template.

Printable-robot templates should be customizable at least in

https://www.origami.ink/

PaperSignals Parameterized | 6

Figure 7: Custom PaperSignals Interface. http://customPaperSignals.herokuapp.com).

terms of dimensions. And for complicated designs, chang-

ing the dimensions of one part might warrant the update of

another dimension. The interface must take these changes

into account. Generated designs should be easy to modify

and adapt to the user’s needs.

The Parameterized PaperSignals interface is based on

a collection of Python scripts that automate the changing

of dimensions for two of the PaperSignals templates. The

simplicity of the interface carries over many of the same

benefits of similar open source software programs for pa-

per craft objects to the robotic papercraft objects considered

here. Non-expert users only need to input the desired di-

mension changes, while expert users can consider the de-

sign abstractions and work toward the development of fully

parameretized printable-robot templates.

2.2 Implementation

We developed a prototype of a website for generating

customizable templates in the SVG format. The web applica-

tion takes dimension parameters from the user and outputs

http://customPaperSignals.herokuapp.com

PaperSignals Parameterized | 7

a set of templates for the microcontroller, the main box, and

the other parts. All the parts have the right dimensions that

perfectly fit each other, so that users do not have to adjust

the dimensions manually.

The application consists of a HTTP server and a sim-

ple HTML user interface to interact with. In order to run

the application, the code for the server is contained in a file

called ‘server.py’.

We used Inkscape to trace the original Google tem-

plates, which are currently only available in a PDF format,

and generate vector (SVG) files. This allowed us to nicely

lasercut all the templates along with the dashed lines and

provided more flexibility. Ever better, we could then easily

modify the resulting SVG files. The process is as follows.

Each SVG template consists of several XML paths. An XML

path is just a sequence of commands, starting with an “M”

command specifying the beginning location, followed by

commands for vertical, horizontal and diagonal movement.

We then insert the user’s dimensions as horizontal and verti-

cal commands, and output the resulting path in a new SVG

file.

<path
style="fill:#ffcfd9 ;stroke:#ff0000;stroke-width:0.5px;
stroke-linecap:butt;
stroke-linejoin:miter;
stroke-opacity:1"
d="M 35.075403,35.500069
h 51.419828
h ${w}
v 15.827727
...
V ${y}
L ${p},${l}
h -5.667727
l -5.079998,-5.079997
v 39.08037 v ${f}
l -5.079998,5.08
h -41.25983
h ${ww}
l -5.08,-5.08
V ${vlu}
h 5.667728
l 5.079999,5.08 z"
id="path3702"
/>

An SVG path derived from Google templates, with inserted user
input dimensions as commands.

It is possible to modify different properties of the path

and fill the shape with a user-defined pattern. One possible

future direction for the project is to modify the interface to

allow for template designers (separate from end-users, who

are adjusting parameters on an existing template) to design

parametric patterns.

Parameterized microcontroller & main box templates

PaperSignals Parameterized | 8

3 DOMAIN SPECIFIC LANGUAGE FOR
PAPERSIGNALS

The main challenge in parametrizing and designing

PaperSignals is specifying both the design of the moving

parts and the movement itself, while making sure that these

specifications describe a feasible PaperSignal. The most triv-

ial example is when we change the microcontroller box, we

need to change the larger box, and if themoving parts depend

on the size of the larger box, those need to be customized

as well. It is a significant challenge to design a DSL that

makes it possible for users to specify the entire PaperSig-

nal. However, we can define a simpler DSL that has, for

example, primitives box and signalShape, where box holds

information about the dimensions and design of the main

box, and signalShape holds information about the moving

component of the PaperSignal.

Thus, if we are given coordinates for a pivot point,

three dimensions, and some other parameters, we can “drill”

a hole in our box, lasercut it and insert a wheel. For example,

a potential PaperSignal designer would write

p = hMovement(pivot = (5,5),

initPosition = -1,

finalPosition = 3,

box = b)

to declare that box b has a pivot at position 5,5, and it must

move back and forth 5 units horizontally. More precisely, our

proposed DSL looks as follows.

We have the essential syntax for performing basic op-

erations that might be useful for designing the PaperSignal.

These include arithmetic, loops, assignments, function defi-

nitions etc. Then, we have domain specific primitives such

as box and signalShape that, depending on their arguments,

keeps a string of the form <path ... d =" ...z"id="path0000"/>,

and whenever there is a new component to the object, we

generate a new string describing it, and concatenate it with

the path.

Finally, the DSL will generate symbolic constraints

responsible for “feasibility” of the PaperSignal and use a

solver to maintain that various dimensions and specifications

don’t contradict each other. The building blocks for these

constraints are symbolic values Xint and Xbool.

3.1 Syntax

Variable x

Constant c

c ::= Xint
�� Xbool

�� n �� b �� s �� NA
Parameter p

p ::= x
�� x = e

�� varparam
Argument a

a ::= e
�� x = e

�� vararg
Expression e

e ::= x
�� c �� x ← e1

�� {e1; e2}
if e1 then e2 else e3

�� while e1 do e2
λp.e

�� e (a)
. . .

box(signalShape = t, dims = (x1, x2, x3),

pivot = (x1, x2, x3))

microcontroller(a1,a2,a3)

vmove(a1,a2,a3)

hmove(a1,a2,a3)

PaperSignals Parameterized | 9

signalShape

t ::= Umbrella(e)�� vMovement(pivot = e1,

initPosition = e2,

finalPosition = e3)�� hMovement(pivot = e1,

initPosition = e2,

finalPosition = e3)�� Clock(pivot = e1,

initPosition = e2,

finalPosition = e3)

Path

p ::= []
�� Point(e1, e2) :: p

3.2 Data Structures

Heap

H :m → (v,A)

Value

v ::= (X ,Y)
�� n �� b ��m �� (λp.e,m) �� Γ �� NA

Attribute

A : s → v

Environment

Γ : x →m

Stack

S ::= ∅
�� (e,mΓ) : S

Constraint

C ::= e1 = e2
�� e1 < e2

3.3 Reduction Semantics

IdentLookup
H (mΓ) = (Γ,AΓ) Γ(x) =mv

⟨(x,mΓ);H ⟩ ↪→ ⟨mv ;H ⟩

Constant
mv fresh H ′ = H [mv 7→ (c, ∅)]

⟨(c,mΓ);H ⟩ ↪→ ⟨mv ;H ′⟩

Assign
H (mΓ) = (Γ,AΓ) Γ′ = Γ[x 7→mv]

⟨(x ←mv ,mΓ);H ⟩ ↪→ ⟨mv ;H ′⟩

LamAbs
mf fresh H ′ = H [mf 7→ ((λp.e,mΓ), ∅)]

⟨(λp.e,mΓ);H ⟩ ↪→ ⟨mf ;H ′⟩

. . .

Box

H (m1) = (v1,A1) H (m2) = (v2,A2)

s = “ < path . . . > ”[shape = v1,dims = v2] H ′ = H [mv 7→ s]

⟨(box(m1,m2);H ⟩ ↪→ ⟨mv ;H ′⟩

Umbr

H (m1) = (v1,A1) H (m2) = (v2,A2) H (m3) = (v3,Av3)

s = umbrPath(v1,v2,v3) H ′ = H [mv 7→ s]

⟨(umbrella(m1,m2,m3);H ⟩ ↪→ ⟨mv ;H ′⟩

Path

H (m1) = (v1,A1) H (m2) = (v2,A2) H ′ = H [mv 7→ s]

s = s ′ + “L ” + str (v1) + str (v1) ⟨p;H ⟩ ↪→ ⟨ms ′ ;H ′⟩
⟨(Point(m1,m2) :: p;H ⟩ ↪→ ⟨mv ;H ′⟩

hMove

H (m1) = (v1,A1) H (m2) = (v2,A2) H (m3) = (v3,Av3)

s = hMovePath(v1,v2,v3) H ′ = H [mv 7→ s]

⟨(hMovement(m1,m2,m3);H ⟩ ↪→ ⟨mv ;H ′⟩

vMove

H (m1) = (v1,A1) H (m2) = (v2,A2) H (m3) = (v3,Av3)

s = vMovePath(v1,v2,v3) H ′ = H [mv 7→ s]

⟨(vMovement(m1,m2,m3);H ⟩ ↪→ ⟨mv ;H ′⟩

Clock

H (m1) = (v1,A1) H (m2) = (v2,A2) H (m3) = (v3,Av3)

s = clockPath(v1,v2,v3) H ′ = H [mv 7→ s]

⟨(Clock(m1,m2,m3);H ⟩ ↪→ ⟨mv ;H ′⟩

PaperSignals Parameterized | 10

3.4 Future Work

(1) Functional specification: The presented parameterization

allows for adjusting dimensions based on geometric spec-

ification of previously defined elements. Another compo-

nent of fabrication could involve consideration for the

mechanical properties and incorporating functionality

into the flexibility of the design. Long term, the print-

able robotics community could aim to generate designs

directly from functional specifications.

(2) Domain Specific Language: The presented abstractions

are a first attempt at defining primitives for parameter-

izing of PaperSignals templates. There already exist ro-

botics experts who have achieved parameterizable and

customizable robots with high precision and great func-

tionality. It would be interesting to consider the design

components that can be extracted from these models and

develop a more sophisticated DSL based on this.

(3) Fabrication techniques: It is worth considering how this

fabrication process scales with larger or smaller func-

tional robots and not simply PaperSignals robots, which

have only a single degree-of-freedom (rotation from the

servo motor).

The fabrication process may have to be adapted in order

to scale. For example, the features that can be cut out

by hand are limited and therefore complex laser cutting

tools would be needed for smaller objects/features. Future

work would involve considering improving or automat-

ing certain parts of the fabrication process, while con-

tinuing to be accessible to the average user. This would

present quite the challenge.

Figure 8: The servo is in blue, with wires connecting to
the microcontroller (shown with USB port facing us). Ebay
microcontrollers are servos are several times cheaper than
Google’s ($5 vs $25), however, Google’s templates have di-
mensions that are incompatible with the cheaper version.
Note also the functional specifications induced on the pa-
per template: holes must exist for the wires to connect the
microcontorller to the servo, as well as for the USB port to
program the papercraft.

4 CONCLUSION

The primary contributions of this work is a method

for developing an interface to change the dimensions of ex-

isting PaperSignals templates and an abstraction of a few

PaperSignals Parameterized | 11

design primitives for further parameterizing the templates.

The interface was implemented in Python and used to gener-

ate design files for the PaperSignals umbrella microcontroller

and main box components. The design primitives are a first

attempt at a set of abstractions that would could specify dif-

ferent PaperSignals templates. This work furthers the goals

of printable-robot design in empowering and encouraging

creative interactions with our physical world.

ACKNOWLEDGEMENTS

This project required much guidance and assistance from

Prof. Elena Glassman and Prof. Nada Amin and we are ex-

tremely grateful for their contributions to the completion of

this project. The authors would like to acknowledge the con-

tributions of the students in CS 252r and CS 279r (Harvard

PL/HCI Graduate Seminar).

PaperSignals Parameterized | 12

REFERENCES

[1] Michael T. Tolley Robert J. Wood Onal, Cagdas D.
and Daniela Rus. Origami-inspired printed robots.
IEEE/ASME Transactions on Mechatronics, 20(5), 2015.

[2] Ankur M. Mehta and Daniela Rus. An end-to-end system
for designing mechanical structures for print-and-fold
robots. Proceedings of the 2014 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2014.

[3] Ankur M. Mehta, Daniela Rus, Kartik Mohta, Yash Mul-
gaonkar, Matthew Piccoli, and Vijay Kumar. A scripted
printable quadrotor: Rapid design and fabrication of a

folded mav. In ISRR, 2013.
[4] Gaetano Caruana andGordon Pace. Embedded languages

for origami-based geometry. 01 2007.
[5] Roger C Alperin and Robert J Lang. One-, two-, and

multi-fold origami axioms. Origami, 4:371–393, 2009.
[6] Amir Firouzeh and Jamie Paik. Robogami: A fully in-

tegrated low-profile robotic origami. Journal of Mecha-
nisms and Robotics, 7(2):021009, 2015.

[7] Daniela Rus and Michael T Tolley. Design, fabrication
and control of origami robots. Nature Reviews Materials,
3(6):101, 2018.

	Abstract
	1 Introduction
	1.1 Limitations of Google PaperSignals
	1.2 Need Thesis
	1.3 Academic Literature Overview
	1.4 Software Prior Art

	2 Prototype: PaperSignals parameretized
	2.1 Design Principles
	2.2 Implementation

	3 Domain Specific Language for PaperSignals
	3.1 Syntax
	3.2 Data Structures
	3.3 Reduction Semantics
	3.4 Future Work

	4 Conclusion
	References

