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1 INTRODUCTION

Imagine you are at the beach with a
metal detector which goes off, and
you stick your hands in the sand to
find the metal object. Even though
the granular media (sand) is con-
stantly affecting your sense of touch
on your fingers and palm, its acu-
ity combined with your cognition
enables you to easily find buried
objects. Manipulating granular me-
dia, just like manipulating rigid or
deformable objects, comes very nat-
urally to us. For robots, however,
it remains a challenging task. Re-
search in robotic manipulation has
focused on rigid objects more than Fig. 1: Left: Digger Finger. Middle: Penetration
deformable objects and granular me- motion. Right: Ta.ctile. data showipg zero contact,
dia. One reason is due to the diffi- granular media (rice), and object contact
culty of modelling the complex dynamics of the latter two. Another reason is that
the perceptual understanding of the latter two via tactile based hardware devices
and algorithms, compared to vision-based methods, is poor. Yet, when dealing with
physical interactions, tactile sensation can be more critical than visual information.
Due to these compounding limitations, robotic manipulation of deformable objects
and granular media remains poorly explored. With this motivation, we take on the
challenge of using touch feedback to search for objects buried in granular media. A
robot with such capabilities can prove useful in areas such as deep sea exploration
[1]], mining, excavation, decommissioning explosive ordinates [2} [3]], agricultural
robotics and other areas where task dependant information can be occluded. In this
paper we present an early prototype of the Digger Finger (Figure[I) that is designed
to easily penetrate granular media and is equipped with the GelSight sensor [4} [5].
We begin by providing a brief overview of the related work in the domain of robotic
manipulation for granular media. We then present our technical approach in section
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[2] starting with the design of the sensor in section [2.T] and then the manufacturing
process in section [2.2] Section [3|describes the two experimental procedures we used
to evaluate the performance of the Digger Finger in searching object buried inside
granular media. Section [3.1]illustrates the ability of the Digger Finger to fluidize
granular media during penetration. Section [3.2]illustrates the ability of the Digger
Finger to identify objects that are buried inside granular media. Finally, in section 4]
we provide our concluding remarks.

Robotics research related to granular media has been fall primarily within the
scope of automated operation of construction equipment such as scooping [6l], legged
locomotion [7, 8], gripper design[9], manipulators [10], haptic displays [[11} [12]
and in robotic pouring tasks [13} [14], to name a few. In contrast, work on robotic
manipulation of and within granular media has only recently begun receiving attention
from the research community. In [[15], the authors teach a robot how to scoop and dig
into a pile of beans by learning the dynamics of the media from visual data. Building
on [15], the authors in [16] and [[17] learn to use tactile, visual and auditory feedback
to estimate the flow and amount of granular materials during scooping and pouring
tasks respectively. Regarding object identification in granular media in particular,
two non-destructive methods that are popular for finding buried objects are Ground
Penetrating Radars (GPR) and ultrasonic vibrations [18} [19, ?]. These methods,
though reliable, are only good at estimating rough geometry and approximate location
of the buried objects. Closest to our work is [20] and [21]]. In [20] the authors use
the BioTac sensors from SynTouch Inc. on a three fingered Barrett hand to detect
contact with a cylinder fixed inside a bed of granular media. They take advantage of
multi-modal sensory data to classify contact and no-contact events. Similarly in [21]]
the authors again only classify the presence or absence of an object inside granular
media. Unlike [20| 21]], we use the high resolution data from the Digger Finger to
identify different objects inside granular media. Also, our design enables deeper
penetration in granular media with the help of mechanical vibrations.

2 TECHNICAL APPROACH

2.1 Sensor Design

The three main goals of our design were, (i) enable the sensor to easily penetrate the
granular media, (i7) provide rich tactile sensing to identify objects that are buried
inside granular media. (ii7) achieve human finger like form factor so that the sensor
can easily be fitted on existing robot hands. The GelSight [4} 5] is one type of vision
based tactile sensor [22} 23]]. It consists of a camera that observes a directionally
illuminated clear elastomer gel coated in a Lambertian or semi-specular membrane.
Objects pressed into the gel deform the surface and the illumination allows estimation
of surface normal along the deformation. The 3D geometry of the deformation
can then be recovered using photometric stereo. Previous GelSight sensors had flat
sensing surfaces [24} 25], which restricted their integration with manipulators to
parallel grippers for planar contact interactions. The four major modifications that we
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make to the previous GelSight sensors to make it suitable for searching for objects
in granular media are (i) sensor shape, (if) illumination source, (iii) addition of
mechanical vibration and (iv) gel. Following are the details on the same.

First, our design adds a pointed tip to the prior work
on creating curved GelSight sensors [26]. Second,
we replace two color LEDs (green and red) with
fluorescent acrylic paint from Liquitex. This allows
for a simple and compact design especially at the tip
of the Digger Finger which has to face the brunt of
digging. We use six blue color LEDs (3528) from
Chazon to excite the fluorescent paints from the top
of the Digger Finger (ref. Fig.[2). To excite the red and
green color paint to the required intensity we shine «—10
an excessive amount of blue light into the Digger
Finger. This causes the image to be dominated by the
blue spectrum compared to the red and green parts.
To compensate this we use a small piece of yellow
filter that we put on top of the image sensor of the
camera by placing the filter inside the lens assembly.
We also experimentally set the white balance setting
of the camera to suite our needs. The camera that
we use is from Arducam (SKU: B006603) which
we interface with using Raspberry Pi 4. Third, this
new design aids digging by fluidizing granular media
using vibrations. For this we mount a high speed
micro vibration motor (6—12V, 18000 rpm) on to
the Digger Finger. Fourth, we replace the silicone gel
used in the previous GelSight sensors with a 3 mm
wide and 1.5mm thick double sided, transparent
polyurethane tape (ZSHK Happy Cover HC06). We
also keep two things from previous GelSight designs. Fig. 2: Exploded view of the
First, we use a mirror as did [23]] to have a camera  Digger Finger. Numbered arrows
view that is perpendicular to the gel sensing surface, 2 !- Bottom housing, 2. Mirror 3,
rather than looking at the surface at an angle. This Fltuorescent paint, 4. Clear acrylic

. . . . ube, 5. Gel, 6. Top housing, 7.
allows us to have a slim device without worrying  Camera housing, 8. Blue LEDs, 9.
about self-occlusions of the sensing surface when PCB, 10. Vibrator housing, 11.
contact is made. Second, we use the concept of light Vibrator motor
piping illustrated in [26] to have light rays pass across
a curved surface with negligible loss in light intensity.

= D Ak

2.2 Manufacturing Process

The manufacturing process of the Digger Finger consists of several simple rapid
prototyping techniques including 3D printing, laser cutting and spray painting, to
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name a few. The Digger Finger consists of a sensing module and a vibration module.
The Digger Finger’s sensing module’s core is shaped like a cylindrical wedge. We
use a piece of optically clear acrylic tube with inner diameter of 16 mm and outer
diameter of 22 mm (see Fig.[2). The tube is first diagonally cut using a band saw. The
top and bottom surfaces of the cut tube are then sanded and polished until optically
clear. The bottom surface of the tube is then painted with red and green fluorescent
paint. Afterwards, we design and 3D print two custom housing (top and bottom) to
house the necessary components of the Digger Finger (cameras, LEDs, mirror, gel
boundaries). A thin piece of mirror is cut in shape of an ellipse using a laser cutter
and attached to the center of the bottom housing using VHB double sided tape. Blue
colored LEDs are soldered onto a custom designed printed circuit board (PCB) that
is milled from a copper plate. This PCB is friction fit to the top housing along with
the camera. The polyurethane double-sided tape that we use as the gel is brushed
with aluminum flake powder, and then over coated with a thin layer of thermoplastic
polyurethane (TPU) dissolved in a solvent. The gel is left to rest until the coating is
dry, after which the uncoated side is applied across the clear acrylic tube. With the
fluorescent paint and gel on the acrylic tube, we then assemble the top and bottom
housing with the acrylic tube. This finishes the complete assembly of the sensing
module of the Digger Finger. The vibration module is a 3D printed housing for the
vibrator motor which is also cylindrical in shape. This module gets attached on top of
the sensing module using screws and nuts.

3 EXPERIMENTS AND RESULTS

3.1 Fluidizing Granular Media

The goal of this experiment is to study the effect of mechanical vibrations on the
jamming of granular media. An immersed intruder moving in a granular media will
experience strong forces because of the particle jamming effect. These forces are
a function of several geometrical and material properties of the intruder and the
granular media particles. It is well studied that the force chains formed among the
granular particles during jamming can be weakened and the granular media fluidized
by blowing air [27,128]] or by mechanical vibrations [29} 30]. Following [30] we use a
vibrator motor to study the relation between the force acting on the Digger Finger and
its penetration depth in granular media, in the presence and absence of mechanical
vibrations.

The experimental setup as shown in FigureE] (left) consists of a robot arm (URS)
from Universal Robots Inc. The Digger Finger is coupled to the robot wrist using
a 3D printed part. We use two types of granular media in our experiments, sand
and rice. We choose these two particular media because of two very distinct effects
they have on the object identification task, explained in the next section. For the
sake of this experiment it is more important to note that both these media have
bulk densities equal to 1578.56 kg/m> and 941.48 kg/m? respectively, resulting in
different force versus distance relationships. Both the granular media are placed in a
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Fig. 3: Left: Experimental setup. Arrows show 1. URS robot arm, 2. F/T sensor, 3. Granular media
(rice), 4. Digger Finger Right: As vibrator motor operating voltage increases, the force (measured by
F/T sensor) required to move a given vertical distance in the granular media decreases.

plastic container (12x12x11inches) up to 6inch deep. We choose these container
dimensions to reduce the edge effect during penetration [31]]. We attach a 6-axis force
torque sensor (ATI Gamma) at the wrist of the robot arm to measure the ground truth
forces acting on the Digger Finger during penetration. For each experimental trial the
robot arm is first positioned such that the tip of the Digger Finger touches the surface
of the granular media. The robot arm is then commanded to vertically penetrate the
granular media at a speed of 2 mm/s. We keep the velocity of penetration fixed for
all trials. The robot arm is moved until it reaches the safety limit of its joints and
stalls. We experimentally find that this distance, both in the case of sand and rice,
is less than the depth of the container. In the first trial the vibrator motor is off. For
each of the next trials we increase the operating voltage of the vibrator motor by 2V,
starting from 6 V and going up to 12V, thereby increasing the vibrating frequency
and amplitude of oscillation of the motor. Prior to each trial, the state of the granular
media is reset by vigorously shaking the container and shoveling the granular media
with a tool. For each trial the 3D position of the robot wrist and force from the ATI
Gamma sensor are synchronously recorded. The force in z-axis is first smoothed
using an exponential filter (& = 0.1) and is then plotted against the z position vector
of the robot arm for each trial as shown in Figure [3] (right). It is evident from the
figure that when the vibrator motor is off i.e. at 0V, the force on the Digger Finger
begins to increase earlier in contrast to when the vibrations are on. This early rise in
the force is approximately 2 cm in the sand case and 4 cm in the rice case. Moreover,
in the cases when the motor is on, all the curves are slightly less steep resulting in
almost double the penetration at stall as compared to the case when the motor is off.
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We quantify the vibrations from the vi- Motor Frequency |Acceleration
brator motor at 6V, 8V, 10V & 12V volt- | operating (Hz?) amplitude
ages in terms of frequency and acceleration voltage (V) (m/ s2)
amplitude using a 3-axis accelerometer. As 6 156 9.6
the motor is rated to run at 18000 rpm at 3 189 1§ g
12 V, theoretically the motor cannot vibrate 10 213 73 '6
more than 300 Hz. So we use an accelerom- .

12 172 14.7

eter present in LSM9DS 1 sensor chip/[f]that

we can sample at a mammum frequenc.y of Table 1: Vibrating frequency and acceleration
500 Hz. The board is attached to the tip of amplitude of the Digger Finger tip as a

Digger Finger using a double sided tape. function of vibrator motor voltage.

The vibrator motor is run at the above specified four operating voltages and data
from the accelerometer is recorded for five seconds. The fundamental frequency of
the vibrations is found by running fast Fourier transform on the data. The average
of the fundamental frequency over two trials for the four operating voltage is shown
in Table[I] The drop in the frequency and acceleration amplitude going from 10V
to 12V is attributed to the resonance in the mechanical vibrations that we observe
at 10 V. Due to this resonance the Digger Finger vibrates with the largest amplitude
at 10 V. This is clearly visible in Figure[3] While all the others curves are smoothed
out with the same smoothing constant (i.e. @ = 0.1), the curve at 10V still shows
periodic oscillation at certain sections of the curve, both for sand and rice, indicating
the need for an @ < 0.1 to obtain a smooth curve like the rest. We further verify the
vibration frequency using the accelerometer on a smart phone using two Android
software applications. One (iDynamics [J) analyzes mechanical vibration and the
other (Spectroid ) audio. We find that the fundamental frequency values for the
four operating voltages range between 160 - 210 Hz. The above observations clearly
indicate that the Digger Finger is able to fluidize densely packed granular media with
vibrations of approximately 150 - 200 Hz and 10 - 24 m /s? acceleration amplitude,
resulting in deeper penetration.

3.2 Object Identification

This experiment aims to study the performance of the Digger Finger in identifying
objects in different granular media. For simplicity we narrow down the problem to
classify four simple shapes i.e. triangle, square, hexagon and circle as shown in Figure
in two different types of granular media i.e. sand and rice. We choose rice and
sand because both media have exhibit very different behavior in the way their grains
interact with the Digger Finger and the object shapes we are interested in identifying.
Through ad hoc experiments with different granular media (washed sand, chia seeds,
lentils, and mung beans) we observed that there are three distinct phenomenona that
occur when a Digger Finger immersed in granular media approaches a stationary

Thttps://www.sparkfun.com/products/13944
2https://www.bauing.uni-kl.de/en/sdt/idynamics/
3https://download.cnet.com/Spectroid/3000-20432_4-77833231.html
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Fig. 4: Top row: Design of buried 3D printed objects. Middle row: Digger Finger image showing
imprint of object shapes in absence of any granular media. Bottom row Imprints of shapes in the
presence of granular media (sand).

object, depending upon the geometry and material properties of the grains as well
as the Digger Finger and the object. The first occurs when very small grains such
sand get permanently stuck between the Digger Finger and the object. The second
occurs with grains (in our case rice) that are similar in size to the buried object, in
which case the grains can completely block the object from coming in contact with
the Digger Finger. The only way to come in contact with the object is to vibrate or
twist the Digger Finger to push the grains to the side (refer to supplementary video[f).
We found twisting to be the most efficient way of pushing rice grains to the sides.
Third case is when the material properties of the grains e.g. mung beans and lentils
are such that they become slippery and do not get stuck between the Digger Finger
and object. Based on this ad hoc experiment we narrow down the choice of granular
medias to sand and rice. Figure d]shows the different 3D printed objects that we make
use of to collect data for this experiment and their corresponding imprints on the
Digger Finger as seen from the camera in the form of RGB images.

For data collection we manually press the 3D printed objects on the Digger Finger
and collect around 3000 images for each object shape. We repeat this procedure in
a container filled with sand to collect images for cases when the sand grains get
stuck between the Digger Finger. As shown in Figure[d] the sand grains distort the
boundaries of the object shapes, potentially making them ambiguous. These two
rounds of data collection result in a total of eight classes: four classes with just the
object shapes and four with sand obscuring the objects. We add a ninth class for

4https://sites.google.com/view/diggerfinger



https://sites.google.com/view/diggerfinger

8 R. Patel et al.

the zero contact case. The dataset for the first eight classes are cleaned by manually
removing images where the object is making no or partial contact with the Digger
Finger. This data cleaning process leaves us with around 1500 images for each of the
first eight classes.

For classification we rely on
convolution neural networks be-

cause of their growing popular- Confusion matrix "
ity for image analysis. In partic- aircle
ular we train a residual neural dircle_sand | "
network [32]] (ResNet50) on our o |

data set by performing a popular
technique in machine learning
called transfer learning. Trans-
fer learning focuses on storing
knowledge gained while solving
one problem and applying it to trangle sand 1
a different but related problem. zer0_contact 1
For example, ResNet50 network
is often first trained to classify
real world images from Ima-
geNet [¥| data set. We use this
pre-trained network as the start-
ing point and re-train it on our own object shape data set. We do this by only training
the last convolutional block of the network and an uninitialized fully connected layers
(classifier block) of size 128 at the end of the network. We split the 1500 images
of each class into training (1200), validation (200) and testing (100) data sets. We
augment the training data by randomly cropping and rotating the images. We also
add Gaussian noise to each color channel. The network is trained for 10 epochs with
a learning rate scheduler and batch size of 64, at the end of which it attains 99%
training 98% validation accuracy. The confusion matrix calculated on the test images
is shown in Figure[5]

hex_sand

square 4

True label

square_sand -

triangle

Predicted label

Fig. 5: Confusion matrix for object identification task

4 CONCLUSION AND FUTURE WORK

Identifying objects buried in granular media using tactile sensors is a challenging
task. In our experiments we identify several difficulties. First, it is difficult to actually
reach the object because the granular media will start to jam and prevent downward
movement. Second, even when the tactile sensor can reach the object, the granular
media particles tend to get stuck between the sensor and object, distorting the actual
shape of the object. To tackle these challenges we present a novel tactile sensor that
we call Digger Finger. We build on previous GelSight tactile sensor designs and
introduce several innovations, including the use of red and green fluorescent paint and

Shttp://www.image-net.org/
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polyurethane tape as the gel, to design a compact wedge-shaped sensor. We design
the Digger Finger to fluidize granular media during penetration using mechanical
vibrations. We use the high resolution tactile sensing provided by the Digger Finger
to successfully identify different object shapes even when distorted by granular media
particles.

For fluidizing granular media, we have only presented results for vertical pene-
tration, but moving horizontally in granular media is also increasingly challenging
at greater depths. Further experiments are required to understand the nature of
vibration and robot arm motion needed to fluidize granular media while moving
horizontally. For object identification a major issue is that over time the paint on
the gel incurs wear causing noticeable artifacts in the RGB sensor image data. The
tactile data after wear looks different than the data used to train the neural network
for object identification. This causes the network to make false positive predictions,
in particular for the zero contact class. The network may also make false predictions
when the granular media touches the Digger Finger during free motion or when the
gel wrinkles during penetration. Ideally, the network should be able predict the type
of the granular media and also robustly predict zero contact. We therefore plan to
train the network on additional classes of granular media and also experiment with
better data augmentation techniques to make the network more robust to gel artifacts.
We also plan to calibrate the Digger Finger in order to construct 3D geometry data
from the raw RGB image data. In particular this would let us use algorithms trained
on simulated 3D geometry data, as opposed to trying to simulate raw RGB sensor
image which requires modelling the exact illumination of the Digger Finger. Using
3D geometry data would also allow object detection algorithms to better transfer to
real world tactile data from multiple Digger Finger units.

We believe that such a tactile sensor paves the way for the robotic manipulation
within and of granular media, whether for everyday tasks such as scooping rice or
litter, or for more industrial applications such as finding and inspecting buried cables
and other objects.
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