
Inertia Wheel Inverted Pendulum
Ashwin Krishna
Harvard University

Email: ashwin krishna@college.harvard.edu

Nao Ouyang
Harvard University

Email: nouyang@g.harvard.edu

Written: May 22, 2019

Abstract—We explore the classic nonlinear controls problem,
inverting a pendulum, using analyses learned in this class.
Specifically, we look at using a flywheel to stabilize the
pendulum. In simulation, we derive the equations of motion and
apply LQR and region of attraction analyses for our system.
We also build a hardware system from scratch. In hardware, we
successfully implement downward stabilization, swingup (using
a bang-bang four state controller), and inverted stabilization
(using both a PD controller) and a bang-bang controller. Future
work includes adding either current control or motor velocity
estimate to allow for use of LQR control and not just PD control.
A demo video can be found at https://youtu.be/bWbEt6hoUvY.

I. INTRODUCTION

The inverted pendulum problem has been widely explored
in robotics and control theory. In this project, we control a
single-link pendulum using a torque-controlled inertial wheel.
We tackle the problems of stabilizing at the bottom (0 deg)
and swinging up to stabilize at the top (180 deg).

A. Related Work

The theory of the reaction-wheel inverted pendulum prob-
lem has been widely explored. For related work, we turned
more to a few actual hardware implementations of similar
problems that are documented online.

In 2010, a prior 6.832 student, Hunter McClelland, built
a reaction wheel inverted pendulum. [1]. In 2013, Spanlang,
Mayr, and Gattringer of the Institute of Robotics at Johannes
Kepler University Linz (Austria) built a reaction-wheel in-
verted pendulum contained within a 18x18x18 cm cube, using
the floor as the base of the pendulum. [2].

In 2012, Shane Colton built the Seg Stick at MITERS (the
machine shope we built our project in). The Seg Stick is a
self-balancing broomstick powered by two drill-driven wheels
at the base of the stick. It has the functionality of the cart-pole
system, but less constrained, and with the ability to move the
system while balancing. In section IV, we further discuss the
possibilities of adding a similar feature to our reaction-wheel
inverted pendulum system. See [3]

In 2016, Ben Katz posted a blog about the process of build-
ing a Furuta Pendulum from scratch and using LQR controls.
For Furuta-type inverted pendulums, instead of controlling the
x coordinate of the base of the pendulum, the control is in
the form of another rotational axis on which the pendulum is

attached orthogonally. Thus, by rotating the system rapidly in
the x, y plane, stability in the z plane can be achieved. [4]

A few further resources were documented online on a blog
post [5].

II. HARDWARE METHODS

To constrain our reaction wheel inverted pendulum, we
constructed a wooden jig that holds a spinning shaft in place
with two ball bearings. The shaft (functioning as the base
of the pendulum) is fixed to the plastic lever at the end of
which the flywheel and motor are mounted. An encoder is
press-fit into the shaft at the base of the pendulum, which
gives us our θ1 value. To further minimize the escaping of the
system’s energy through means other than rotation, the system
is clamped down. We used an Arduino Uno for electronics and
code.

As with any hardware project, it took multiple iterations to
arrive at a sufficiently-controllable prototype. The first iteration
used a printer motor, and a solid aluminum flywheel with
about 4 inches in diameter. After experimenting with trying
to control the pendulum with this setup, it became apparent
that the flywheel needed more inertia.

Fig. 1. Original motor (with encoder) and flywheel

After adding more weight and a slight increase in diameter
to the flywheel, we experimented further. A higher swingup

https://youtu.be/bWbEt6hoUvY

was able to be commanded by this improvement, but we
needed a motor with more torque, because the motor required
an unnecessarily long ramp down in speed before switching
directions.

Fig. 2. Three iterations of flywheel

Our third and final iteration featured a flywheel with a much
larger diameter and weight distributed more on the perimeter,
and a large upgrade to a drill motor with significantly more
torque (available from harbor freight). These vast increases in
both torque and inertia finally allowed the system to command
the acceleration necessary for a full swingup.

Fig. 3. Static upright pendulum

III. HARDWARE METHODS

To constrain our reaction wheel inverted pendulum, we
constructed a wooden jig that holds a spinning shaft in place
with two ball bearings. The shaft (functioning as the base
of the pendulum) is fixed to the plastic lever at the end of
which the flywheel and motor are mounted. An encoder is
press-fit into the shaft at the base of the pendulum, which
gives us our θ1 value. To further minimize the escaping of the
system’s energy through means other than rotation, the system
is clamped down. We used an Arduino Uno for electronics and
code.

As with any hardware project, it took multiple iterations to
arrive at a sufficiently-controllable prototype. The first iteration
used a printer motor, and a solid aluminum flywheel with
about 4 inches in diameter. After experimenting with trying
to control the pendulum with this setup, it became apparent
that the flywheel needed more inertia.

After adding more weight and a slight increase in diameter
to the flywheel, we experimented further. A higher swingup
was able to be commanded by this improvement, but we
needed a motor with more torque, because the motor required
an unnecessarily long ramp down in speed before switching
directions.

Our third and final iteration featured a flywheel with a much
larger diameter and weight distributed more on the perimeter,
and a large upgrade to a drill motor with significantly more
torque (available from harbor freight). These vast increases in
both torque and inertia finally allowed the system to command
the acceleration necessary for a full swingup.

A. Theory to Reality
Later in the paper, we will explain the LQR theory. In

reality, however, we relied on PD control. The reasons for
this are as follows:

• Limited torque output. Even though our final motor
brought a significant increase in torque, it was still far
from the ideal (part of this was due to the flywheel’s
relatively large mass). For full controllability, we’d want
a motor with enough torque to be able to handle rapid
direction switching at high angular velocities.

• Lack of motor encoder. Though our first motor had an
attached encoder, it did not have nearly enough torque, so
we had to upgrade. Unfortunately, the newer drill motor
did not have an attached encoder, so we lost the ability
to track θ2. θ̇, and θ̈2 accurately. Naturally, losing those
state variables resulted in a decrease in controllability.

• Lack of current control. The software controller we
wrote outputs torque, but we do not command torque
directly (the motor interface only takes angular velocity
as input).

To calculate the state variables, We have discrete digital
values from the quadrature encoder on the shaft, which was a
high quality one (1025 counts).

We furthermore use a naive method to estimate angular
velocities from the encoder counts: measure time elapsed and
the change in angle, divide, set as our thetadot.

B. Swingup with Bang-Bang Control

To get an initial working implementation to swing the
pendulum up to 180 degrees, we used a simple bang-bang
controller. The protocol is as follows. When θ1 > 0 and
θ̇1, run the motor at full speed clockwise to maximize the
amplitude reached. When the apex of that period is reached
(i.e. θ̇1 = 0), run the motor at full speed in the opposite
direction. Essentially, run the motor at full speed in whatever
direction is consistent with the pendulum’s direction of travel,
w.r.t. the overall system. If the pendulum is moving clockwise,
spin clockwise. If the pendulum is moving counterclockwise,
spin counterclockwise. Using this bang-bang controller, we
were able to achieve full swingup.

To make the swingup more efficient, we implemented a
more complex controller, utilizing energy shaping (covered in
section III F).

C. Inversion with PD Control

For downward convergence, we used a simple Proportional-
Derivative (PD) controller with two k values: one for θ1, and
one for θ̇1. Our feedback for motor output was formulated by:

motor output = − ceil(k(θ1 − θ1d) − kd(θ̇1 − θ1dotd))

where k and kd represent the proportional and derivative
constants, respectively, θ1d represents the desired θ1 value
(0.0), and θ1dotd the desired θ̇1 value (0.0). To choose our
k constants, we used a potentiometer to our arduino setup, for
easy, on-the-go tuning.

D. Results

To quantify the efficacy of our controller, we timed multiple
different tasks for both our first iteration (with the smaller
flywheel and weaker motor), and our final iteration (with the
larger flywheel and stronger motor). The tasks we timed were
natural downward convergence (how long the pendulum takes
to converge at 0 deg when started at 90 deg, without any
control input), controlled downward convergence (how long
the pendulum takes to converge at 0 deg when started at 90
deg, with control input), and controlled swingup (how long it
takes for the pendulum to swing up to 180 deg). These findings
are displayed in Table I.

TABLE I
RESULTS ON THE DOWNWARD STABILIZATION AND SWINGUP TASKS

Natural
Downward

Convergence
(starting at 90 deg)

Controlled
Downward

Convergence
(starting at 90 deg)

Controlled
Swingup

(starting at 0 deg)

First Flywheel
(smaller)

and Weaker
Motor

45 secs 11 secs 23 secs

Final Flywheel
(larger)

and Stronger
Motor

46 secs 3 secs 3 sec

Video clips of these on the system can be found here:
• Final Flywheel natural from 90: https://bit.ly/2JXV39B

• Final Flywheel controlled from 90: https://bit.ly/
2WipsWJ

• First Flywheel (partial) Swingup: https://bit.ly/2X7tI8R
• Second Flywheel (full) Swingup: https://bit.ly/2WlHmrA
• Final Flywheel (full) Swingup: https://bit.ly/2VE6Qfn

IV. SIMULATION ANALYSIS

A. Equations of Motion

To derive the equations of motion (EOM), we use the
Lagrangian method. Let L equal to the kinetic energy plus
the potential energy of the system.

L = KE − PE (1)

By Lagrange’s method,

d

dt
(
∂L

∂q̇i
) − ∂L

∂qi
=

n∑
i=0

Fi (2)

for i = 1, 2, 3...n forces.
Thus, we need to write out the KE, the PE, the derivative

of L with respective to each state q, the derivative of L with
respect to the (time) derivative of each state q, and then the
time derivative of that last term.

Let us first consider the unaltered case, from the problem
set, where here we will derive the equations of motion by
hand but otherwise simply explain the derivation in detail.
Later, we will consider a system that more closely matches
our real-life system. We will not be able to compare the model
with reality, since we were unable to implement the full state
measurement so LQR cannot apply. Instead, we show another
example as applied to a modified system where the reaction
wheel pendulum is put on an (unpowered) cart.
1) Write the KE of the system. We can decompose this into
the translational and rotational components.

First, let us consider (abstractly) the translational KE of a
point mass m rotating around the origin on a massless string
of length l. θ is defined as angle from the downward vertical
point, increasing counterclockwise (diagram not provided).
The position of the point mass is x = lcosθ and y = lsinθ.
KE is 1

2m · q2, where q is the position.

KEx = 0.5m(l · d
dt

sin θ)2 =
1

2
m(lθ̇ cos θ)2 (3)

KEy = 0.5m(l · d
dt

cos θ)2 =
1

2
m(−lθ̇ sin θ)2 (4)

KE = KEx +KEy =
1

2
ml2θ̇2(cos2 θ + sin2 θ) (5)

=
1

2
ml2θ̇2 (6)

(7)

where on the last step we used the trig identity
cos2 +sin2 = 1.

Now applying this to the stick and flywheel components of
our system, we calculate 1) the stick around the origin 2) the

https://bit.ly/2JXV39B
https://bit.ly/2WipsWJ
https://bit.ly/2WipsWJ
https://bit.ly/2X7tI8R
https://bit.ly/2WlHmrA
https://bit.ly/2VE6Qfn

flywheel around the origin. Note that the KE of the stick acts
at l1, the center-of-mass of the stick, not l2.

KEtranslational =
1

2
m1(l1θ̇1)2 +

1

2
m2(l2θ̇1)2 (8)

(9)

Additionally we have the inertial component of KE since we
have angular velocities here and our stick has mass and our
previous point mass is instead a rotating flywheel. The general
formula is KE = 1

2I2θ̇
2. Noting that angular velocities

”add”, and applying this to each component of our system;
we calculate 1) inertial KE of the stick 2) inertial KE of the
flywheel.

KEinertial =
1

2
I1θ̇

2
1 +

1

2
I2(θ̇1 + θ̇2)2 (10)

The total KE of the system is the sum of the above.
2) Write the PE of the system. This is more straightforward.
Gravitationally speaking, (and with a bit of geometry - note
that our theta is defined from vertical and increasing counter-
clockwise)

PE = m1g(−l1 cos θ1) +m2g(−l2 cos θ1) (11)

3) Now we have the Lagrangian L = KE − PE and must
take the partial of the Lagrangian with respect to each state
variable, in our case θ1 and θ2.

Using sympy (note: we left the sympy ordering intact, so
the terms are a bit weird), we calculate

∂L

∂q
=

[
−gl1m1 sin(θ1) − gl2m2 sin(θ1)

0

]
(12)

4) As an intermediate step, we calculate the

∂L

∂q̇
=

[
I1θ̇1 + I2(θ̇1 + θ̇2) + l21m1θ̇1 + l22m2θ̇1

I2(θ̇1 + θ̇2)

]
(13)

5) Finally, we calculate the time derivative of the previous
term

d

dt

∂L

∂q̇i
=

[
I2θ̈2 + θ̈1(I1 + I2 +m1l

2
1 +m2l

2
2)

I2θ̈1 + I2θ̈2

]
(14)

6) We set the equation equal, on the right hand side, to our
input torque τ .

We may then directly ask sympy to solve for q̈

θ̈1 = −g (m1l1 +m2l2) sin(θ1)

I1 +m1l21 +m2l22
(15)

θ̈2 = g
(m1l1 +m2l2) sin(θ1)

I1 +m1l21 +m2l22
(16)

More neatly, we can go directly from Eq. (14) and Eq. (12)
to the ”manipulator equations” as per the class textbook.
Specifically, we put Eq. (14) on the left hand side, factoring
out θ̈1 and θ̈2; then on the right hand side we put Eq. (12),
factoring out θ̇1 and θ̇2 as well as adding in our input torque
τ .

That is, we rewrite in form

M(q)q̈+C(q, q̇)q̇ = τg(q) +Bu (17)

Doing so, we then get as given to us in the homework (yay
it matches!)

[
m1l

2
1 +m2l

2
2 + I1 + I2 I2
I2 I2

] [
θ̈1
θ̈2

]
+ 0 =[

−(m1l1 +m2l2)g sin θ1
0

]
+

[
0
1

]
τ (18)

B. Linearization Around Fixed Point

We can further use sympy to linearize our fixed points.
Focusing on the upright case, we can use the approximation

sin θ ≈ π − θ for θ ≈ π (19)

For the downward case, we can similarly use the approxi-
mation

sin θ ≈ θ for θ ≈ 0 (20)

After plugging in to sympy, we get

t 1 d d o t = −g ∗ (l 1 ∗m1 + l 2 ∗m2) ∗ s i n (t 1) / (I1 + l 1 ∗∗2∗m1 +
l 2 ∗∗2∗m2)

t 2 d d o t = g ∗ (l 1 ∗m1 + l 2 ∗m2) ∗ s i n (t 1) / (I1 + l 1 ∗∗2∗m1 +
l 2 ∗∗2∗m2)

.

Or written in Latex,

θ̈1 = −g (m1l1 +m2l2) sin(θ1)

I1 +m1l21 +m2l22)
(21)

θ̈2 = g
(m1l1 +m2l2) sin(θ1)

I1 +m1l21 +m2l22)
(22)

This can be rewritten to be the same result as in the
homework, where we substitute in the approximation around
θ = π

θ̇1
θ̇2
θ̈1
θ̈2

 =

0 0 1 0
0 0 0 1

(m1l1+m2l2)g
(m1l21+m2l22+I1)

0 0 0

− (m1l1+m2l2)g
(m1l21+m2l22+I1)

0 0 0

θ1 − 180

θ2
θ̇1
θ̇2

+

0
0
−1

(m1l21+m2l22+I1)
1
I2

+ 1
(m1l21+m2l22+I1)

 [τ] (23)

Fig. 4. Free body diagram

1) A and B: If we plug in the measurements from our
physical system as in Table II, we get the following A and
B matrices (rounded).

A =

0 0 1 0
0 0 0 1

321 0 0 0
−321 0 0 0

 (24)

B =

0
0

−1568
2075

 (25)

Note: We treat the stick mass as negligible compared the
motor, which is modelled as a point mass at distance l2; thus
we set l1 equal to l2, and m1 = mmotor.

C. Constants

TABLE II
SYSTEM CONSTANTS

Property Measurement

mstick = 115 g

mflywheel 546 g

mmotor 450 g

lstick 21 cm

rflywheel 8.5 cm

D. Applying LQR
Now that we have A and B, the matrices for our linearized

dynamics of form f(x) = Ax + Bu, we supply our Q and
R cost functions and apply lqr. We care a lot about the θ1,
some about the θ̇1, a bit about θ̇2, and not at all about θ2. We
also put a cost on the input using R(here we closely follow
the assignment, since it turns out we will not be able to apply
LQR to our physical system).

Q =

10 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0.1

 (26)

R =
[
0.1
]

(27)

Using the LQR function built into Drake, we get (rounded)

K =
[
−35 0 −5 −1

]
(28)

S =

12 0 1 0.
0 0 0 0
1 0 0. 0.
0. 0 3 0.

 (29)

where K is our control matrix, operating on each of the four
states (q = θ1, θ2, θ̇1, θ̇2); and S is the solution of the Ricatti
equation.

E. Region of Attraction via Lyapunov

We will briefly cover the region of attraction (RoA) analysis,
which is covered in the problem set already. For an LQR
controller, which uses a linearization of underlying nonlinear
dynamics, this analysis tells us the region for which the
linearization is valid (where our LQR control can be used).

Specifically, we will use Lyapunov analysis. Lyapunov
analysis is a relaxed optimization guarantee – instead of
guaranteeing an controller optimal for all states will be found,
we instead guarantee a controller will be able to accomplish
a given state.

With the LQR controller, which operates as a constant
matrix times the state error (from the desired fixed point)

u = −K(xmeasured − xfixed point) (30)

We denote the error as x̄ = x − xfp. For our Lyapunov
function, we can use the cost-to-go of the LQR solution

Vcost-to-go = x̄TSx̄ (31)

where S is as return to us by the Drake LQR solver. This S
is the solution to the Ricatti equation (a randomly fancy name
for a first order quadratic differential equation); in steady-state,
this becomes an algebriac Ricatti equation.

Note that in performing this analysis we picked a single
known reasonble Lyapunov function. Other functions are pos-
sible, which would give slightly different regions of attraction
for the same LQR controller.

The value of this function, for a given state, can then be
used to bound where our linear controls will work. In our
controller, we simply check the value of V for the state we
are in and compare it to this bound. If we are within the region
of attraction, we use the LQR controller. Otherwise, we use
the swing-up controller described in the following section.

F. Energy-based Controller for Swingup

The idea behind the energy-based swingup controller is
straightforward: we add torque in the direction that the mag-
nitude of θ1 is increasing in. We care to increase θ1. However,
we cannot directly control θ1, but instead apply torque to
control θ2. (In jargon, this is called ”non-collocated input”).

For the simple pendulum, we observed

Ė = uθ̇ (32)

For our system, we rederive Ė accounting for the fact that
our input is now non-collocated.

We actually desire Ė to be zero, since our E will be at
steady-state, thus our energy error is directly Ė. We then derive
what u must be to drive this to zero.

In the end, in the actual sytem, a bang-bang controller was
sufficient. Additionally, as the derivation is already covered in
the homework, we will not repeat it here.

G. Controllability

This is again covered in the homework and will not be
derived here.

The existence of multiple examples online would show that
this system is generally theoretically controllable, even given
torque limits.

In our case, we can also more directly consider a quick-and-
dirty calcuation: what is maximum torque produced by gravity,
compared to the maximum torque our motor can generate?
Additionally, in reality the flywheel will also saturate at some
max speed of the motor, past which back EMF will limit the
speed of the flywheel. This strongly impacts the difficulty of
controlling our system.

This analyses is omitted, as the results didn’t quite match
reality, and likely would need to be tailored further for the
non-idealities of our physical system.

V. LQR FOR ”SYSTEM ON WHEELS”

For a detour (in order to demonstrate understanding of the
problem set material) we imagine sticking the whole thing on
wheels and redo the same analysis. (For sanity we run the
calculations through sympy instead of by hand).

A. Equations of Motion

1) Write the KE of the system. We can decompose this into
the translational and rotational components. First, let’s write
the x and y components of each part. The cart is located at x
= x and y = 0.

position cart = [x, 0] (33)
position stick = [x+ l1 sin(θ1), l1 cos(θ1)] (34)

position wheel = [x+ l2 sin(θ1), l2 cos(θ1)] (35)

Asking sympy to take derivatives since it’s easy to drop
terms by hand,

velocity cart = [ẋ, 0] (36)

velocity stick = [l1θ̇1 cos(θ1) + ẋ,−l1θ̇1 sin(θ1)] (37)

velocity wheel = [l2θ̇1 cos(θ1) + ẋ,−l2θ̇1 sin(θ1)] (38)

Then we get

KEtranslational =
1

2
Mv cart2 +

1

2
m1v stick2 +

1

2
m2v wheel2

(39)

And as before we get the inertial kinetic energy term

KEinertial =
1

2
I1θ̇

2
1 +

1

2
I2(θ̇1 + θ̇2)2 (40)

3) Now we have the Lagrangian L = KE − PE and must
take the partial of the Lagrangian with respect to each state
variable, in our case x, θ1 and θ2.

∂L

∂q
=

 0

−(gm1l1 + gm2l2 +m1l1θ̇1ẋ+m2l1θ̇1ẋ sin(θ1))
0

4) As an intermediate step, we calculate the partial of L with
respect to q̇, ∂L

∂q̇ .
Here we copy from sympy the three terms

([[M∗ xdo t + m1∗ (2∗ l 1 ∗ t 1 d o t ∗ cos (t 1) + 2∗ xdo t) / 2 + m2
∗ (2∗ l 2 ∗ t 1 d o t ∗ cos (t 1) + 2∗ xdo t) / 2 ,

1 .0∗ I1∗ t 1 d o t + 0 .5∗ I2 ∗ (2∗ t 1 d o t + 2∗ t 2 d o t) + l 1 ∗∗2∗m1
∗ t 1 d o t ∗ s i n (t 1) ∗∗2 + l 1 ∗m1∗ (l 1 ∗ t 1 d o t ∗ cos (t 1) +
xdo t) ∗ cos (t 1) + l 2 ∗∗2∗m2∗ t 1 d o t ∗ s i n (t 1) ∗∗2 + l 2 ∗
m2∗ (l 2 ∗ t 1 d o t ∗ cos (t 1) + xdo t) ∗ cos (t 1) ,

0 .5∗ I2 ∗ (2∗ t 1 d o t + 2∗ t 2 d o t)]]))

.

5) Finally, we calculate the time derivative of the previous
term. Here we again note directly from sympy d

dt
∂L
∂q̇i

=

t 1 d d o t ∗ (l 1 ∗m1 + l 2 ∗m2) ∗ cos (t 1) − t 1 d o t ∗∗2∗(l 1 ∗m1 +
l 2 ∗m2) ∗ s i n (t 1) + xddo t ∗ (M + m1 + m2)] ,

1 .0∗ I1∗ t 1 d d o t + 1 .0∗ I2∗ t 1 d d o t + 1 .0∗ I2∗ t 2 d d o t + 1 .0∗
l 1 ∗∗2∗m1∗ t 1 d d o t − 1 .0∗ l 1 ∗m1∗ t 1 d o t ∗ xdo t∗ s i n (t 1) +

1 .0∗ l 1 ∗m1∗ xddo t∗ cos (t 1) + 1 .0∗ l 2 ∗∗2∗m2∗ t 1 d d o t −
1 .0∗ l 2 ∗m2∗ t 1 d o t ∗ xdo t∗ s i n (t 1) + 1 .0∗ l 2 ∗m2∗ xddo t∗

cos (t 1) ,

1 .0∗ I2 ∗ (t 1 d d o t + t 2 d d o t)

.

6) We set the equation equal, on the right hand side, to our
input torque τ . We may then directly ask sympy to solve for
q̈

xddo t = −(l 1 ∗m1 + l 2 ∗m2) ∗ (0 . 5∗ g ∗ (l 1 ∗m1 + l 2 ∗m2) ∗ s i n
(2 . 0∗ t 1) + t 1 d o t ∗∗2∗(I1 + l 1 ∗∗2∗m1 + l 2 ∗∗2∗m2) ∗
s i n (t 1) + t a u ∗ cos (t 1)) / (I2 ∗ (M + m1 + m2) + (l 1 ∗
m1 + l 2 ∗m2) ∗∗2∗ cos (t 1) ∗∗2 − (M + m1 + m2) ∗ (I1 +
I2 + l 1 ∗∗2∗m1 + l 2 ∗∗2∗m2))

t 1 d d o t = (g ∗ (l 1 ∗m1 + l 2 ∗m2) ∗ (M + m1 + m2) ∗ s i n (t 1) +
0 .5∗ t 1 d o t ∗∗2∗(l 1 ∗m1 + l 2 ∗m2) ∗∗2∗ s i n (2 . 0∗ t 1) +
t a u ∗ (M + m1 + m2)) / (I2 ∗ (M + m1 + m2) + (l 1 ∗m1 +
l 2 ∗m2) ∗∗2∗ cos (t 1) ∗∗2 − (M + m1 + m2) ∗ (I1 + I2 +
l 1 ∗∗2∗m1 + l 2 ∗∗2∗m2))

t 2 d d o t = (− I2∗g ∗ (l 1 ∗m1 + l 2 ∗m2) ∗ (M + m1 + m2) ∗ s i n (t 1)
− 0 .5∗ I2∗ t 1 d o t ∗∗2∗(l 1 ∗m1 + l 2 ∗m2) ∗∗2∗ s i n (2 . 0∗ t 1

) + t a u ∗ ((l 1 ∗m1 + l 2 ∗m2) ∗∗2∗ cos (t 1) ∗∗2 − (M + m1
+ m2) ∗ (I1 + I2 + l 1 ∗∗2∗m1 + l 2 ∗∗2∗m2))) / (I2 ∗ (I2

∗ (M + m1 + m2) + (l 1 ∗m1 + l 2 ∗m2) ∗∗2∗ cos (t 1) ∗∗2 −
(M + m1 + m2) ∗ (I1 + I2 + l 1 ∗∗2∗m1 + l 2 ∗∗2∗m2)))

.

B. Linearization

With the above values, we can linearize as before. Our A
matrix should now be a 6x6 matrix instead of a 4x4 matrix.
Solving for ẋ = Ax+Bu

ẋ =

ẋ

θ̇1
θ̇2
ẍ

θ̈1
θ̈2

 , Ax =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(see ẍ above)

(see θ̈1 above)

(see θ̈2 above)

x
θ1
θ2
ẋ

θ̇1
θ̇2

(41)

C. LQR

Now we can directly plug A, B, Q, and S into LQR to
get out a linear controller. This is ommitted for time reasons.
The Lyapunov analysis should follow easily as well from
the problem set. The energy shaping analysis requires more
modification, but is omitted for time reasons.

VI. CONCLUSION AND FUTURE WORK

Building this system from scratch, including fabricating,
wiring, and coding, came with numerous lessons. We learned,
for example, the importance of being quantitative in the setup
and design of the system (i.e. calculating torque needed to
control the system, given the inertial properties of the flywheel,
etc.), first hand. We also experienced the nuances of different
control methods, and when each can and cannot be used (i.e.
not having all of the measured states required for LQR, and
thus switching to a PD controller with energy-shaping). We
faced the many realities that come with hardware projects,
but were ultimately able to control the reaction-wheel inverted
pendulum with just a PD controller, achieving relative stability
at both the origin and apex.

Future work should include verifying the robustness of the
system and quantifying the region of attraction of this physical
system, which will allow for more precise control. Eventually,
we’d like to transition to a 3D printed version of this system
and stick it on wheels!

ACKNOWLEDGMENTS

The authors would like to thank many people, including: on
the theory side, Elizabeth Mitten and Shane Colton for theory
help, the TAs Wei Gao and Yunzhu Li, the instructor Prof.
Russ Tedrake. Motor control discussion, Bayley Wang (and
Shane). PD tuning method, Ben Katz.

REFERENCES

[1] H. McClelland. Reaction wheel control demo — youtube. [Online].
Available: https://www.youtube.com/watch?v=j9RDpmamRRQ

[2] J. Mayr, F. Spanlang, and H. Gattringer, “Mechatronic design of a
self-balancing three-dimensional inertia wheel pendulum,” Mechatronics,
vol. 30, pp. 1–10, 2015.

[3] Seg... stick — instructables. [Online]. Available: https://www.
instructables.com/id/Segstick/

[4] Desktop inverted pendulum part 2: Control. [On-
line]. Available: http://build-its-inprogress.blogspot.com/2016/08/
desktop-inverted-pendulum-part-2-control.html

[5] Final project proposal research (6.832) — orangenarwhals.
[Online]. Available: http://orangenarwhals.com/hexblog/2019/04/10/
Final-Project-Proposal/#Note

https://www.youtube.com/watch?v=j9RDpmamRRQ
https://www.instructables.com/id/Segstick/
https://www.instructables.com/id/Segstick/
http://build-its-inprogress.blogspot.com/2016/08/desktop-inverted-pendulum-part-2-control.html
http://build-its-inprogress.blogspot.com/2016/08/desktop-inverted-pendulum-part-2-control.html
http://orangenarwhals.com/hexblog/2019/04/10/Final-Project-Proposal/#Note
http://orangenarwhals.com/hexblog/2019/04/10/Final-Project-Proposal/#Note

APPENDIX

A. Code for Equations of Motion (flywheel pendulum)

import sympy
from sympy import sin, cos, simplify, Derivative,

diff
from sympy import symbols as syms
from sympy.matrices import Matrix
from sympy.utilities.lambdify import lambdastr

import time

t1, t2, t1dot, t2dot, t1ddot, t2ddot, tau = syms(’t1
t2 t1dot t2dot t1ddot t2ddot tau’)

m1, l1, I1, m2, l2, I2, g = syms(’m1 l1 I1 m2 l2 I2
g’)

p = Matrix([m1, l1, I1, m2, l2, I2, g]) #
parameter vector

q = Matrix([t1, t2])

qdot = Matrix([t1dot, t2dot]) # time derivative of q
qddot = Matrix([t1ddot, t2ddot]) # time derivative

of qdot
K_translat = Matrix([0.5 * m1 * (l1 * t1dot)**2 + \

0.5 * m2 * (l2 * t1dot)**2])
K_inertial = Matrix([0.5 * I1 * t1dot**2 + \

0.5 * I2 * (t1dot + t2dot)**2])

P = Matrix([-1 * m1 * g * (l1 * cos(t1)) + -1 * m2 *
g * (l2 * cos(t1))])

L = K_translat + K_inertial - P

To calculate time derivatives of a function f(q),
we use:

df(q)/dt = df(q)/dq * dq/dt = df(q)/dq * qdot

partial_L_by_partial_q = L.jacobian(Matrix([q])).T
partial_L_by_partial_qdot = L.jacobian(Matrix([qdot

]))
d_inner_by_dt = partial_L_by_partial_qdot.jacobian(

Matrix([q])) * qdot + \
partial_L_by_partial_qdot.jacobian(Matrix([qdot
])) * qddot

lagrange_eq = partial_L_by_partial_q - d_inner_by_dt

r = sympy.solvers.solve(simplify(lagrange_eq),
Matrix([qddot]))

t1ddot = simplify(r[t1ddot])
t2ddot = simplify(r[t2ddot])

print(’t1ddot= {}\n’.format(t1ddot));
print(’t2ddot= {}\n’.format(t2ddot));

--- Simply substitute, for theta = pi2, sin pi =
1, sin theta ˜= (pi - theta)

.

B. Code for Swingup and Upright Controller

The constants were determined by hand (in another (sepa-
rate) program, two potentiometers were wired up and used to
tune the gains).

Gain tuning proceeded as per Ben Katz’s suggestion:

• Set Kp to zero. Increase Kd until chattering unreasonable
(where the tiniest disturbance will cause motor to go
forward and reverse rapidly). This shows the maximum
damping the system can produce.

• Next increase the Kp until too much overshoot occurs.
• Profit.

// Modify for encoder-less (no motor encoder) new
prototype

// 16 May 2019

#include <Rotary.h>
#include <MegaMotoHB.h>
#include <math.h>

//https://cdn.usdigital.com/assets/datasheets/
H5_datasheet.pdf?k=636931248608523021

// --------Lever Encoder--------
int val;
volatile int encoder1Pos = 0;
volatile int encoder2Pos = 0;
Rotary rMotor = Rotary(2, 3); // motor (theta2)
Rotary rStick = Rotary(A5, A4); // stick (theta1)
int n = LOW;
/*const byte CPin = 0; // analog input channel*/
/*int CRaw; // raw A/D value*/
/*float CVal; // adjusted Amps value*/

// --------Motor--------
int EnablePin = 8;
int duty;
int PWMPin = 11; // Timer2
int PWMPin2 = 10;
MegaMotoHB motor(11, 10, 8);
int motor_output = 0; // command to motor

// --------P-Controller--------
double thetadot_deadband = 0.2;
double theta_deadband = 5;

int sample_time = 5; // 15 msec

double theta1 = 0.0; // get_from_encoder()
double theta2 = 0.0; // get_from_encoder()
double prev_theta1 = 0.0; // get_from_encoder()
double prev_theta2 = 0.0; // get_from_encoder()

double theta1dot = 0.0; // get_from_encoder()
double delta_theta1 = 0.0; // get_from_encoder()
double theta2dot = 0.0; // get_from_encoder()
double delta_theta2 = 0.0; // get_from_encoder()

double theta1_desired = 0.0;
double theta1dot_desired = 0.0;

double err_theta = 0.0;
double err_thetadot = 0.0;

int delta_motor = 0;
int prev_motor = 0;

bool theta_CW;
bool motor_CW;

unsigned long now = 0;
unsigned long time_elapsed;
unsigned long prev_time = 0;

double state[4];

double k = 4; // theta constant
double kdot = -80; // thetadot

void setup() {
Serial.begin(230400);
/*Serial.begin(9600); // for use with plotter
tool */

rMotor.begin();
rStick.begin();
PCICR |= (1 << PCIE2);
PCMSK2 |= (1 << PCINT18) | (1 << PCINT19);
PCICR |= (1 << PCIE1);
PCMSK1 |= (1 << PCINT13) | (1 << PCINT12);
sei();

/*motorOn();*/
motor.Enable();
motor.SetStepDelay(1);
/*setPwmFrequency(PWMPin, 8); // change Timer2
divisor to 8 gives 3.9kHz PWM freq*/

}

void loop(){
// -------- update time --------
now = millis();
time_elapsed = (now - prev_time);
if (time_elapsed >= sample_time)
{

// -------- update theta --------
// issue: prev_theta is the same as theta

theta2 = getCurrentTheta2();
theta1 = getCurrentTheta1();
delta_theta2 = theta2 - prev_theta2;
delta_theta1 = theta1 - prev_theta1;
theta1dot = delta_theta1 / time_elapsed;
theta2dot = delta_theta2 / time_elapsed;
prev_theta2 = theta2;
prev_theta1 = theta1;
state[0] = theta1;
state[1] = theta2;
state[2] = theta1dot;
state[3] = theta2dot;

// -------- determine motor input --------
/*Serial.println(motor_speed);*/

err_theta = theta1 - theta1_desired;
err_thetadot = theta1dot - theta1dot_desired;
motor_output = - ceil(k * (theta1 -
theta1_desired) - kdot * (theta1dot -
theta1dot_desired));
delta_motor = motor_output - prev_motor;
prev_motor = motor_output;
// Serial.print(motor_output);
/*aprintf("\ntheta1 %f, t2 %f, t1dot %f, t2dot %
f, out %d, deltath %f, cw ", */
/*theta1, theta2, theta1dot, theta2dot,
motor_output, delta_theta1);*/
/*aprintf("\n %d %f %d %f %f ", delta_motor,
theta1, motor_output, err_theta, err_thetadot);
*/
/*aprintf("\n %f %f %f %f ", theta1, err_theta,
theta1dot, err_thetadot);*/
/*aprintf("\n %f %f ", theta1dot, err_thetadot);
*/
aprintf("\n t1 %f errtheta %f, errdot %f, motor
out %d, t1dot %f", theta1, err_theta,
err_thetadot, motor_output, theta1dot);
/*Serial.println(theta1);*/
/*Serial.print(delta_motor);*/

/*// -------- write appropriate motor input
--------*/
motor_output = abs(constrain(motor_output,
-150, 150));
motor_output = 200;
if (theta1 > 8) {

if (theta1dot > 0.01) {
motor.Rev(motor_output);
/*motorCCW(abs(motor_output));*/

}
else if (theta1dot < 0.01) {

motor.Fwd(-motor_output);
/*motorCW(abs(motor_output));*/

}
}
else if (theta1 < -8) {

if (theta1dot > 0.01) {
motor.Rev(motor_output);
/*motorCCW(abs(motor_output));*/

}
else if (theta1dot < -0.01) {

motor.Fwd(-motor_output);
/*motorCW(abs(motor_output));*/

}
else {

// do nothing
}

}
else {

// theta angle small; do nothing or use
//motor.Stop();
motorWrite(1);

}

// SANITY CHECK
/*
motor.Rev(200);
delay(500);
motor.Fwd(200);
delay(500);
motor.Stop();
delay(500);
*/

prev_time = now;
}

}

// --------- Helper Functions -------

// -------- Motor Funcs --------

// Implement bang bang control on theta2 dot dot
// -- This is PID loop to control actual motor speed

to desired speed
void motorWrite(int someValue) {

if (someValue > 0) {
if (theta2dot > 0) motor.Rev(someValue); //

motor.Stop();
else motor.Rev(someValue);

}
else if (someValue < 0) { // < 0

someValue = abs(someValue);
if (theta2dot > 0) motor.Fwd(someValue);
else motor.Fwd(someValue);

}
else {

//do nothing
}

}

// -------- Angle Conversion --------
double getCurrentTheta1() { // calibration for stick

encoder = 1250
double val = (double(encoder1Pos) / 1250) * 360;
val = fmod(val, 360);
if (val > 180) {

val = val - 360;
}
return val;

}

double getCurrentTheta2() { // 500 ticks / rev, for
motor encoder

double val = (double(encoder2Pos) / 500) * 360;
val = fmod(val, 360);
if (val > 180) {

val = val - 360;
}
return val;

}

// ---- Set interrupt to read encoder ----

// -------- Read encoders --------

ISR(PCINT2_vect) { // motor, on D2 and D3
unsigned char result = rMotor.process();
if (result == DIR_NONE) {
}

else if (result == DIR_CW) {
encoder2Pos--;

}
else if (result == DIR_CCW) {

encoder2Pos++;
}

}

ISR(PCINT1_vect) { // stick, on A5 and A4
unsigned char result = rStick.process();
if (result == DIR_NONE) {
}

else if (result == DIR_CW) {
encoder1Pos--;
// Serial.println(getCurrentTheta());

}
else if (result == DIR_CCW) {

encoder1Pos++;
}

}

//---- print help ---------
int aprintf(char *str, ...) {
int i, j, count = 0;

va_list argv;
va_start(argv, str);
for(i = 0, j = 0; str[i] != ’\0’; i++) {

if (str[i] == ’%’) {
count++;

Serial.write(reinterpret_cast<const uint8_t*>(
str+j), i-j);

switch (str[++i]) {
case ’d’: Serial.print(va_arg(argv, int));

// int
break;

case ’l’: Serial.print(va_arg(argv, long));

// long
break;

case ’f’: Serial.print(va_arg(argv, double))
; // float

break;
case ’c’: Serial.print((char) va_arg(argv,

int)); // char
break;

case ’s’: Serial.print(va_arg(argv, char *))
; // string

break;
case ’%’: Serial.print("%");

break;
default:;

};

j = i+1;
}

};
va_end(argv);

if(i > j) {
Serial.write(reinterpret_cast<const uint8_t*>(
str+j), i-j);

}

return count;
}

void setPwmFrequency(int pin, int divisor) {
byte mode = 0;
if(pin == 5 || pin == 6 || pin == 9 || pin == 10)

{
switch(divisor) {

case 1: mode = 0x01; break;
case 8: mode = 0x02; break;
case 64: mode = 0x03; break;
case 256: mode = 0x04; break;
case 1024: mode = 0x05; break;
default: return;

}
if(pin == 5 || pin == 6) {

TCCR0B = TCCR0B & 0b11111000 | mode;
} else {

TCCR1B = TCCR1B & 0b11111000 | mode;
}

} else if(pin == 3 || pin == 11) {
switch(divisor) {

case 1: mode = 0x01; break;
case 8: mode = 0x02; break;
case 32: mode = 0x03; break;
case 64: mode = 0x04; break;
case 128: mode = 0x05; break;
case 256: mode = 0x06; break;
case 1024: mode = 0x07; break;
default: return;

}
TCCR2B = TCCR2B & 0b11111000 | mode;

}
}

.

	Introduction
	Related Work

	Hardware Methods
	Hardware Methods
	Theory to Reality
	Swingup with Bang-Bang Control
	Inversion with PD Control
	Results

	Simulation Analysis
	Equations of Motion
	Linearization Around Fixed Point
	A and B

	Constants
	Applying LQR
	Region of Attraction via Lyapunov
	Energy-based Controller for Swingup
	Controllability

	LQR for "System on Wheels"
	Equations of Motion
	Linearization
	LQR

	Conclusion and Future Work
	References
	Code for Equations of Motion (flywheel pendulum)
	Code for Swingup and Upright Controller

