
CS223: Efficient Algorithms for Detecting & Classifying Credit
Communities

Nao Ouyang, Juspreet Singh Sandhu, Mark York

December 2019

1 Motivation
Useful information exists in social networks, but it is difficult to access. One example is lenders in the
developing world, who wish to know which borrowers are likely to repay. Currently lenders face widespread
defaults and must charge exorbitant interest rates [HRH18, MMM+13]. Solving this problem could increase
incomes, improve food security, and reduce civil unrest [Cab19].

Companies, including Branch and Tala, use machine learning models to determine creditworthiness of in-
dividual borrowers, but reliable data is hard to find. Fortunately, community members already know who is
creditworthy. If lenders could provide performance-based incentives to community members to recommend
creditworthy peers, the lenders could discover the creditworthy borrowers in the network, lend only to them,
and make more stable returns while charging lower interest. Designing an efficient algorithm to gather and
use these recommendations requires reasoning about the graph representing the social network.

We consider graphs where each vertex represents a community member, and each edge represents a rela-
tionship between them. There are a number of design considerations for our graph and search algorithms.
We could consider some vertices to be recommenders, some to be borrowers, and some to be both, or
we could restrict our consideration to only borrower nodes. Borrower nodes may be thought of as binary
(creditworthy/ not creditworthy) or as existing on some normalized, continuous scale; we will restrict our
consideration to the binary case. Similarly, graphs may be represented with weighted or unweighted edges to
represent the level of knowledge, trust, or a combination of the two between community members. We will
consider the edge weights to have one continuous weight value representing trust, with a value of zero being
completely neutral. Additionally, we note that many social graphs consist of densely connected disjoint
sub-communities with sparse connections between two communities. Throughout our paper, we work in
this regime. It is also important to consider varying levels of recommender truthfulness and knowledge, and
various baseline rates for creditworthy vs. non-creditworthy borrower vertices. Target performance metrics
include false positive rates of borrower recommendations, number of iterations required to discover 50%,
90%, and 100% of creditworthy nodes, and total cost to discover all creditworthy nodes (assuming there is
some cost per recommendation and a higher cost for false positives). These metrics will be formalized in
the introduction below.

The paper is organized as follows: Section 2 introduces notation and basic definitions, our model and prob-
lem statements, and summarizes our contributions. Section 3 surveys related approaches that we consider
for our algorithms. Section 4 covers our formulation of the problem and related theoretical results. Section
5 shows the results of our simulations, and Section 6 includes our conclusion and next steps.

1

2 Introduction
We are interested in using social knowledge to find creditworthy borrowers. This knowledge exists among
potential borrowers’ social contacts, and we want to model how to use this network to discover these con-
tacts. We first introduce basic notations and definitions, and then rigorously introduce our model, assump-
tions about it, and the problem we wish to investigate.

2.1 Notation & Definitions
We represent a graph as G = (V,E), where V denotes the set of vertices and E ⊆ V × V . All graphs
are assumed to be simple; that is, they have no self-loops. A graph can be undirected, in which case E is
symmetric, or directed, in which case E is not symmetric. The set Γ(v) = {u ∈ V | (v, u) ∈ E} denotes
the vertices to which v can flow. A weight function w : E → R maps edges to some real number. Often,
we will normalize this weight so that w(e) ∈ [−1, 1], ∀e ∈ E. Unless otherwise stated, H : string→ Z is a
hash function that maps strings to integers. C will denote a trust matrix and contain normalized trust values
for all edges in the graph.

We now introduce a few basic definitions that are consistently used in this paper:

Definition 1 (Bipartite Clique). A bipartite clique of a graph G = (V,E) is a disjoint subset of vertices
A,B ⊂ V , such that, e = (a, b) ∈ E, ∀a ∈ A, b ∈ B.

Definition 2 (Dense Bipartite Subgraph). A dense bipartite subgraph of a graph G = (V,E) is a disjoint
subset of nodes A,B ⊂ V , such that, |E′ | = |{e = (a, b) | a ∈ A, b ∈ B}| ≥ c

√
|A||B| for some fixed

c ∈ (0, 1).

This definition is chosen from the one defined in [NSC+08]. In general, k-Dense Subgraph refers to the
induced subgraph of k vertices with maximum average degree (or, equivalently, maximum number of edges).
As it turns out, a k-Dense Subgraph can be efficiently approximated up to a factor ofO(nδ), for some δ < 1

3 .
Definition 2 refers specifically to dense bipartite subgraphs. However, since MAX-CUT is known to be NP-
Hard, so is computing the most dense bipartite subgraph.

Definition 3 (Jaccard Similarity). The Jaccard similarity between 2 setsA,B ⊂ U computes the normalized
intersection between them and is given by J(A,B) = |A∩B|

|A∪B| .

Definition 4 (c-Shingle). A c-Shingle estimates the Jaccard similarity between 2 sets A,B ⊂ U by com-
puting 1

c

∑c
i=1 1vi=wi , where, vc = (min

a∈A
π1(a), ..,min

a∈A
πc(a)) and wc = (min

b∈B
π1(b), ..,min

b∈B
πc(b)), for

permutations πj chosen i.i.d. uniformly at random from the group of permutations S|U |.

Notice that a c-Shingle simply computes the probability that the element with the minimal image under
some πj chosen uniformly at random is the same for both A and B. This is the same as J(A,B). A simple
Chernoff bound tells us that this is ε-close to the true similarity with probability ≥ 1 − exp(−ε2c). For
ε = 10−2 and c = c

′
104, this tells us our estimate is always ε-close to the true similarity with probability

≥ 1− 1/c
′
. This is desirable when n is very large.

We can naturally generalize the definition of a c-Shingle, which estimates the single-element similarity of 2
sets A,B to estimate similarity for subsets of A,B of size s.

Definition 5 ((c,s)-Shingle). A (c, s)-Shingle of elements A = {a1, .., an} is constructed as a vector
vc = (z1, .., zc), where each zi is constructed by hashing the string formed by concatenating the s minimal
elements of A under the action of c random permutations π1, .., πc. More concretely, zi = H(′y1y2..y

′
s),

where {y1, .., ys} are the s minimal elements of A under the action of πi.

2

2.2 Problem Definition & Contribution
Community members exist on an unknown social graph G = (V,E). This graph will be treated as either
directed or undirected, depending on the specific sub-problem we model. We further assumeG is connected,
and that it is a disjoint union of dense components (which can be big, but occupy no more than a constant
fraction of the graph). We will assign weights to the edges of G to represent different semantic values for
different sub-problems. There are 2 types of vertices in the graph G:

• Potential borrowers who are creditworthy (CW)

• Potential borrowers who are not creditworthy (CW)

The general problem involves detecting all CW borrowers as quickly as possible with minimal cost. The
system operator can pay graph members (vertices) for recommending neighboring graph members who are
creditworthy. Specifically, under the assumptions above, we propose algorithms to answer the following
questions:

1. How do we detect the set (or an approximation to) of CW borrowers using recommendations from
community members ?

2. How would the distribution induced by the density of CW borrowers (and their neighborhood) affect
the rate of convergence of a discovery algorithm on the graph ?

• Due to high heterogeneity of borrower skill levels and payback likelihood [HRH18], it is rea-
sonable to assume that the set of good potential borrowers is sparse in the set of the nodes of the
graph.

3. Assuming some cost function on the vertices for every query to determine whether a node is CW, a
cost for false positives, and a cost for wait time to discovery of CW borrowers, what is an efficient
algorithm for discovering the set of vertices representative of CW borrowers ?

We approach each of these problems with different models, detailed in Section 4.

2.3 Design Choices
Social networks are complex, dynamic systems. Simplifying assumptions must be made to model them in a
tractable way. We list here some of these design decisions we made.

1. The creditworthiness of underlying borrowers is binary. We denote the underlying fraction of the
population which is creditworthy as pCW . We allow this to vary, as it is a key characteristic of a
population. We denote borrower i as bi, and if borrower i is creditworthy we say bi = CW . In future
work we may consider a continuous level of creditworthiness.

2. We assume that the distribution of creditworthy (CW) and non-creditworthy agents is random with
adjacent borrowers independent of each other. It is possible that CW and non-CW people exist in
concentrated groups, affecting algorithm performance. We denote this independence as Pr(bi =
CW |neighbor(bi) = CW) = Pr(bi = CW).

3. Variable percent of initial vertices are selected as initial recommenders pinit =
|vrecommenders_initial|

|v|
We vary this and assess performance. In reality, there is a cost associated with finding more initial
recommenders, setting up a potential tradeoff.

4. Recommendation language: We ask recommenders to give a binary positive or negative recommen-
dation (+1 or -1) for each of their neighbors for the main algorithm. In the Eigentrust case, recom-
menders must give a continuous score sij ∈ [0, 1], with 0 being least creditworthy.

3

5. Conditional probability that a recommender recommends a potential borrower given that they are
creditworthy - Pr(recij = CW |bj = CW) We allow this to vary and assess performance. recij
represents the recommendation from recommender i about borrower j. In the EigenTrust case, we
assume a normal distribution with µ = cond_probability and σ = 0.1, where values /∈ [0, 1] are
truncated to be in [0, 1].

6. Conditional probability that a recommender recommends a potential borrower given that they are not
creditworthy - Pr(recij = CW |bj = CW)

7. How to take recommendations from recommenders: we have recommenders give us ratings on all
of their neighbors at once. However, one can imagine having recommenders make a small set of
recommendations, evaluating those recommendations, then making further lending decisions with
high-performing recommenders.

8. Weight of in-community recommendations vs. out-of-community recommendations By using dense-
subgraph-identification techniques outlines below, we can assign agents to dense communities, and
determine whether recommendations are coming from in-community or ex-community. Empirically,
this has been shown to be important. Hussam et al. found that recommenders were 24-35% less accu-
rate when resource allocation was on the line, and that this effect was strongest for family members
and close friends [HRH18]. This is outside of scope for our current research and we do not consider
it, but it would make for interesting future work.

3 Related Work
As far as we are aware, no one has applied graphical models to credit analysis before. However, the sub-
components of our problem have seen extensive study, and we cover this in the section below. First, we
discuss the EigenTrust algorithm designed for peer-to-peer file sharing networks, used later in sections 4
and 5 for our simulation. Next, we consider algorithms for isolating dense, highly-connected subgraphs in
the overall graph so that EigenTrust might be run on them separately to see if this provides more accurate
trust scores than the global EigenTrust results. We then briefly touch on a range of graph discovery and
population modeling algorithms that have been used in other contexts. Finally, we discuss an algorithm that
uses Bayesian updates for probabilistic assessments of trust in web services, which could be applied in a
non-binary credit scoring system.

3.1 EigenTrust
The EigenTrust framework [KSGM03] is a means for devising global trust scores for an agent in a networked
system based on the local trust scores of its peers. Kamvar et al. developed EigenTrust for the context of
peer-to-peer file-sharing systems where some peers are reliable sharers of quality content, while others are
not. The five design considerations include:

1. The system should be de-centrally self-policing without a central authority (this differs from our lend-
ing scenario which has a central bank)

2. The system should maintain anonymity so that peers are not known by an externally-associated iden-
tifier (e.g. IP address) (we would prefer unique identifiers for members of our lending system, such
as government ID numbers, which are surprisingly widespread in the developing world).

3. The system should not assign profit to newcomers such that it is not advantageous for peers with poor
reputations to drop out of the network and re-enter with newcomer status (relevant for us)

4. The system should have minimal overhead in terms of computation, infrastructure, and message com-
plexity (applies to us as well - a country may have millions of inhabitants, and the rating system cannot

4

be overly complex)

5. The system should be robust to malicious collectives of peers who know one another and attempt to
collectively subvert the system

Each agent i calculates its local trust score of agents with whom it has interacted as

sij = sat(i, j)− unsat(i, j) (1)

where sat(i, j) and unsat(i, j) represent the number of satisfactory and unsatisfactory interactions, respec-
tively. Each agent then normalizes its trust scores to be between 0 and 1 as follows.

cij =
max(sij , 0)∑
jmax(sij , 0)

(2)

Assuming a type of transitive property of trust, an agent i may assess its trust of its peers’ peers by multi-
plying the weighted trust scores

tik =
∑
j

cijcjk (3)

where i is the agent, j indicates its direct peers, and k denotes its peers’ peers.

This can be represented for all 2nd degree peers using matrix notation as follows.

t = CT ci (4)

and by taking CT to successively higher powers, for someK number of evaluations the value of t converges
to a stable, globally-uniform vector. This vector has several interesting properties:

t = (CT)Kci (5)

• No matter which player’s initial ci is used in 5 above, the limit vector t will be the same global value.
This is the left-principal eigenvector of the matrix C.

• Convergence happens rather quickly; Kamvar et al. found in their simulation with 100 graph members
that convergence typically happened with values of k = 5 to k = 10.

• It is possible for the global value to be computed separately by each agent when successive reports of
intermediate t values are shared by every agent’s peers at each round of calculation

The pseudocode for running this base algorithm is shown in Algorithm 1.

Algorithm 1 EigenTrust Base Algorithm
−→
t (0) =

∑
i

−→c i
n

repeat−→
t (K+1) = CT

−→
t (K)

δ = ||t(K+1) − tK ||
until δ < ε

5

In plain English, each peer i calculates a local trust score c indicating how much it trusts its neighbors k
(normalized, so its neighbors relative to each other) based on the best interaction it had with each neighbor.
To translate this into a global trust score across the entire graph, a matrix C (which in our case is non-
symmetric) is constructed containing all the local trust scores. Assuming that i trusts j’s evaluation of j’s
neighbors k and so on, then the i-by-j matrix C can be multiplied against a vector t of trust scores per node.
Repeated multiplications leads t to converge to a global trust score.

One issue faced by this algorithm is the presence of malicious peers who know each other, and give each
other high ratings and their neighbors low ratings to skew the global trust value of the system. To forestall
this, Kamvar et al. considered that most networks have founding members who are known to be trustworthy,
a set of peers they denote as p. In our case, these could be carefully-chosen initial recommenders. The
algorithm is then modified to include weighting between the original matrix multiplication and the−→p vector
at each step. −→p is also used to fill in normalized trust vectors for agents who do not provide any ratings. For
some constant a ∈ (0, 1), the algorithm becomes

−→
t (k+1) = (1− a)CT

−→
t (k) + a−→p (6)

And the pseudocode becomes

Algorithm 2 EigenTrust Trusted Peer Algorithm
−→
t (0) = −→p

repeat−→
t (k+1) = CT

−→
t (k)

−→
t (k+1) = (1− a)

−→
t (k+1) + a−→p

δ = ||t(k+1) − tk||
until δ < ε

To evaluate the runtime of the above two algorithms, note that multiplying an nxn matrix by an nx1 vec-
tor will require O(n2) steps, and since this may need to be done for a maximum of n iterations before
convergence, the total algorithm runs in O(n3) steps, which is polynomial time in n.

EigenTrust provides a framework for calculating trust in a somewhat dense environment of ratings. For
this, it would be best to have recommenders give non-binary ratings to their level of financial trust to each
neighbor. It is an open question to what degree this could work in sparse ratings datasets. In addition,
it is unclear how to map global trust values to lending decisions, and repayment results to recommender
compensation. One idea for recommender compensation would be the Vickrey-Clarke-Groves mechanism,
which would reward recommenders based on the difference their knowledge made to overall system welfare
vs. the world without their recommendations [PS16]. A weakness of the EigenTrust aglorithm is that it does
not differentiate between neutral situations (i.e. where there have been no interactions between nodes) and
negative experiences.

3.2 k-Dense Subgraphs
The topic of community detection often involves detecting a set of densely connected networks C =
{G1, .., Gm} ⊂ P(G) within a large graph G = (V,E). In its most natural form, the "density" of a
graph can also be measured by its average degree - Intuitively, this corresponds to how many edges the
graph has. Therefore, Graph Density is defined as:

Definition 6 (Graph Density). Given a directed graph G = (V,E), its density is defined as d(G) =
|E|

|V |(|V |−1)

6

Notice that, for a directed graph G = (V,E), |E| =
∑

v∈V out_deg(v). So, for some fixed k > 0, finding
the densest sub-graph G

′
in G with fixed size k corresponds to finding G

′
with the largest average degree.

This is known as the k-Dense Graph problem (DkS). Unfortunately, the DkS problem is known to be NP-
Hard. There exists a polynomial time approximation algorithm, as discussed in Section 2.1. Formally, the
following theorem holds:

Theorem 1 (O(nδ)-approx for DkS, [FPK01]). ∃ a poly(n) time algorithm A that finds a subgraph G
′

of
size k with average degree≥ d∗(G,k)

2n
1
3

, where d∗(G, k) is the true max. average degree of a k-vertex subgraph
in G.

However, its approximation ratio is O(nδ) for δ < 1
3 [FPK01]. It is meaningful to ask whether the approxi-

mation ratio given above can be improved upon, but [Kho06] show that DkS is NP-Hard to approximate up
to a constant factor under a reasonable complexity theoretic assumption about the class NP. As a result, since
we cannot solve the problem of detecting dense subgraphs (of fixed size) up to some constant approximation
in poly(n) time, we use the structure of our given social community.
We work under 2 models:

1. For Algorithm 6, we assume that our community is a sparsely connected set of disjoint, bipartite dense
graphs.

2. For Algorithm 7, we do not assume our community is bipartite. Instead, we assume access to data
about the community structure, such as the population (sizes) of the communities.

For Algorithm 6, we use the DenseSubraph() algorithm defined in [GKT05], which enumerates as many
disjoint, dense bipartite graphs as possible.
It is well known that when k is not fixed, there exist poly(n) times algorithms that return the densest
subgraph (which we call ExtractComponent()) [Gol84]. Specifically, with access to population data, we
can run this algorithm, identify which community is identified, remove it from the graph, and re-run the
algorithm till we get an empty set of vertices. Notice that the number of communities can be no more than
O(n) in our structure (since the communities must be disjoint). Therefore, this approach allows us to extract
all the dense communities in poly(n) time. This approach is used in Algorithm 7.
The reason dense bipartite communities are handled separately from dense communities (in general) is that
the DenseSubgraph() algorithm proposed by [GKT05] uses (c, s)-Shingles and can handle very large
graphs (on the order of millions of nodes) tractably. In contrast, we know of no standardized practical
implementation of the algorithms proposed in [Gol84].

3.3 Discovering Dense Subgraphs in Massive Graphs
To extract dense bipartite components from our graph, which we assume to be sparse overall, we use the
DenseSubgraph(v,Γ(v)) routine given in [GKT05]. We provide a brief but formal explanation of how this
routine works, along with pseudocode for the main call.

The algorithm has two main components, where the first one is a 2-step "shingling" approach. The first
component of the 2-step shingling approach is to compute a (c, s)-Shingle for a given 1-neighborhood Γ(v)
of every vertex v ∈ V . Therefore, to every node v ∈ V , c shingles are attributed. This essentially computes
c s-subsets of Γ(v), each of which is represented with equal probability over the total number of s-subsets.
Additionally, a list of nodes is associated with every shingle s - This marks the dense, common subsets of
vertices to which other vertices flow into. The second component of the shingling is to find the set of vertices
that share a sufficiently large number of shingles in common. This means another (c, s)-Shingle s′ is created
for every set of nodes {v} that are common to some shingle s (which was created on the neighborhood of a
vertex u ∈ V).

7

Having found sets of nodes that share a large number of destinations in common, the second component
of the algorithm performs a "clustering". Two shingles s1, s2 computed by the first step of the shingling
are related iff they share a shingle s′ created by the second step. This leads to an equivalence class of
shingles. Finding dense subgraphs is now a simple application of finding connected components in the
graph representing the equivalence relation on the aforementioned shingles. This is achieved by a simple
use of the classical union-find algorithm [HU73].

A sketch of this algorithm is given by the pseudocode below:

Algorithm 3 DenseSubgraph()
c1, s1, c2, s2 ←− tuned values of c1, s1, c2, s2
i = 0
CC = φ
repeat

C = Shingle([vi,Γ(vi)], c1, s1)
CC ← CC ∪ C

until i = |V | − 1
S = Shingle(CC[], c2, s2)
C = ComputeCluster(S)
j = 0
D ← φ
repeat

C = C[j]
D = D

⋃
c∈C

Γ(c)

until j = |V | − 1
return D

3.4 Graph Exploration Models
Some of the earliest work in this space concerned finding the shortest path which touches a desired set of
terminals in a weighted directed graph when the structure and weights (costs) are known. Prim’s algorithm
from 1957 [Pri57] is such an example. Prim’s algorithm sought to find a minimum spanning tree (MST),
and indeed is guaranteed to do so in connected graphs. The algorithm proceeds by simply adding the nearest
non-visited node to the current tree until all nodes are added.

Three defining factors of our model are 1) the graph structure is not known a priori, 2) the costs come from
falsely believing a non-creditworthy node to be creditworthy, and in that sense occur with some random
probability vs. the fixed costs of traversing a weighted graph, and 3) one recommender can create several
new recommenders, each of which can create several of its own new recommenders, making the spreading
model a bit like a particle filter.

There are numerous algorithms for exploring unknown graphs, including depth-first search (DFS) and
breadth-first search (BFS) algorithms. As there is a time lag required to verify each new vertex’s credibility,
BFS makes more sense for our setting. Since at each step we receive the recommenders’ recommendations
about neighboring nodes, we have enough information to execute Prim’s minimum spanning tree algorithm,
which is guaranteed to find a minimum spanning tree. This approach is captured by algorithm 4 in Section
4.

Another algorithm we mention is the SIR model which assesses the spread of disease through a population

8

[SM04]. This model uses differential equations based on the rate of change of the proportion of the popu-
lation which is susceptible (S), infected (I), and recovered (R). A key parameter is b, the number of people
with which each infected person comes into contact each day. Analogously for us, this could be thought of
as the average degree of each vertex |v|. Another important parameter is k, the percentage of the infected
population which recovers each day. For us, k would assume a fixed value of 1, since the each recommender
gives his or her recommendations and then drops out of the system. The basic differential equations from
Smith et al. include change in infected population

di

dt
= b ∗ s(t) ∗ i(t)− k ∗ i(t) (7)

and change in susceptible population
ds

dt
= −b ∗ s(t) ∗ i(t) (8)

We could consider susceptible, infected, and recovered population to correspond to our unknown population,
recommenders, and known populations. However, this assumes that people move about freely and don’t
exist in a static network, which does not apply to our situation (see [?]).

There is a considerable body of recent work on minimal-cost graph traversal, including traversing all vertices
and edges, but for our purposes, we would prefer only to visit all creditworthy nodes, and visit as few edges
as possible.

3.5 Bayesian Trust - Integrating Behavioral Trust in Web Service Compositions
In contrast to our assumption of binary creditworthiness, Paradesi et. al in Integrating Behavioral Trust in
Web Service Compositions [PDS09] assume that each web service has a continuous probability pi ∈ [0, 1]
of generating a positive experience for users who interact with it. Furthermore, an observer has imperfect
knowledge of this pi, so this imperfect knowledge is modeled as a beta density function which is updated
using Bayesian updating as new experiences are observed. in this way, intermediate beliefs about the pi and
encapsulated. The Bayesian belief probability is written as:

B(pi; a, b) =
1

β
pα−1i (1− pi)b−1 (9)

Where a and b represent one plus the number of positive and negative experiences, respectively.

4 Our Formulation
4.1 Recommender-guided graph discovery
Our first graph-discovery algorithm is similar to traditional graph exploration models. The lender lends to
any borrower who is positively recommended by one or more recommenders. If even one recommendation
is negative, the bank will not lend to that borrower. Upon lending, the bank determines which borrowers are
CW and which are not, and the CW borrowers then give recommendations for all of their neighbors. The
algorithm terminates at the round when no new lendable recommendations are given.

9

Algorithm 4 Recommender-Guided Graph Discovery

1: R← rand(V, pinit) (randomly choose pinit fraction of graph members as recommenders)
2: cost = 0
3: Bdiscard = ∅ (initialize set of borrowers which the bank will not consider)
4: Bkeep = ∅ (initialize set of good borrowers)
5: repeat
6: cost = cost− |Bkeep| (Each good borrower reduces cost by 1 each cycle due to profitable lending)
7: B = neighbors(R)\Bdiscard
8: R = ∅

Algorithm 5 Recommender-Guided Graph Discovery

9: for bi ∈ B do
10: if bi = CW then
11: prob_rec = Pr(recij = CW |bj = CW)
12: else
13: prob_rec = Pr(recij = CW |bj = CW)
14: end if
15: rand = uniform([0, 1])
16: if rand < prob_rec then (Bank lends to this borrower)
17: if bi = CW then
18: R← bi
19: Bkeep ← bi
20: cost− = 1 (bank earns small profit from finding profitable borrower)
21: else
22: Bdiscard ← bi
23: cost+ = 5 (Significant cost to bank for making a loan which is not repaid)
24: end if
25: else
26: Bdiscard ← bi (Bank never lends to this borrower)
27: end if
28: end for
29: until R = ∅

4.2 EigenTrust
In this formulation, recommenders give weighted ratings for each of their neighbors as in section 2. The
algorithm is run until convergence (as in Algorithms 1 and 2 in the EigenTrust subsection), and the bank
lends to borrowers whose global trust scores are above a certain threshold. The main measure in both the
algorithms below is that they compute EigenTrust for each community, ignoring the connections across each
community. Since the original data comes in the form of one graph, algorithms are first applied to extract
communities. Following that, EigenTrust is run on each community. The credit worthy borrowers from
each local community are identified and then put together to form the final list. Outside of comparing the
difference in the set of credit worthy borrowers that local versions of EigenTrust computes (with respect to
a global EigenTrust run), both the following algorithms can be parallelized when computing EigenTrust to
increase computational efficiency.

10

Algorithm 6 Localized EigenTrust for Dense Bipartite Communities
c, s←− tuned values of c, s
i = 0
CC = φ
repeat

C = DenseSubgraph(vi,Γ(vi))
CC ← CC ∪ C

until i = |V |
sc[] = [Eigentrust_Base_Algorithm(CC[1]), ..,Eigentrust_Base_Algorithm(CC[n])]
cs =

⋃
sc[]

Algorithm 7 Localized EigenTrust for Dense Commmunities

CC ← φ
G
′

= G
repeat

C = ExtractComponent(G
′
)

G
′

= RemoveFromGraph(G
′
, C)

if C ∈ Valid Community then
CC ← CC ∪ C

else
Continue

end if
until G′ = φ
sc[] = [Eigentrust_Base_Algorithm(CC[1]), ..,Eigentrust_Base_Algorithm(CC[n])]
cs =

⋃
sc[]

4.3 Analytical / Theoretical Questions
1. How will the local EigenTrust results differ from the global ones?

We discuss our empirical findings to this question in Section 5.3. However, an analytical answer to
this question would be helpful. Given a network of disjoint dense graphs that are sparsely connected,
the eigenvalues locally will be quite different from the global ones. This is clear since the subgraphs
graphs are dense and will presumably come close to being cliques (which have rank-1 in the adjacency
matrix). However, with weights, the rank of the matrix even for dense graphs may be bounded away
from 1. As such, it is unclear exactly how to bound the gap between the global eigenvalue and the
maximum eigenvalue of a densely connected subgraph (or community). The closest result we could
find in the literature is by [PMDC14], which essentially gives a bound on the relationship between the
maximal eigenvalue of the graph and the approximation factor of locating a k-dense subgraph in it.

2. What are the expected false positive rate and cost, given an underlying rate of CW borrowers,
Pr(recij = CW |bi = CW), and Pr(recij = CW |bi = CW)?

By the laws of probability, the false positive rate is

fp = Pr(recij = CW |bi = CW) ∗ (1− pCW) (10)

So the false positive rate will increase as the conditional probability increases or pCW decreases.

11

As defined in the psuedocode for Algorithm 4, the cost for a failed loan is 5 while the cost for a
successful loan is -1 (roughly corresponding to a 20% interest payment in the successful case and a
100% loss in the unsuccessful case). Thus, our expected cost becomes

E[cost]

n ∗ pct_discovered
= 5(Pr(recij = CW |bi = CW)(1−pCW))−Pr(recij = CW |bi = CW)·pCW

(11)

In the case of EigenTrust, this will be determined partially be the threshold global trust score we set
as the criteria to make loans. We discuss this further in Section 5.

3. What percent of creditworthy borrowers would we expect to discover with Algorithm 4?

In the EigenTrust cases, all borrowers will have a trust score, so the question becomes how we set our
threshold trust score to make loans, and what percentage of good borrowers fall below that.

In the Recommender-guided graph discovery case, we can think of the recommenders at each step as
a set of particles which may produce more particles, or which may be extinguished.

4. What is the expected time to convergence given the above parameters, plus number of recommenda-
tions k allowed to be made by each recommender, and average degree |v| of each recommender?

We do not know an explicit expression for this, but the number of simulations needed to converge on
average are discussed in Section 5.3.

5 Simulation
5.1 Setup
We simulated three of our algorithms from section 4 to observe behavior and motivate further theory work.
We simulated 2 graphs, each with 30 nodes, including:

1. Three fully-connected subgraphs with sparse connections between them

2. Three bipartite subgraphs with sparse connections between them

Visual representations or our graphs can be seen in Fig. 1.

For each of these two graphs, we ran three algorithms to discover creditworthy borrowers.

1. Graph Discovery as in algorithm 4. A visualization of this algorithm is shown in Fig. 3.

2. Global EigenTrust as laid out in [KSGM03]. Note that we used a value of ε = .001 and that we lent
only to borrowers with a global trust score of ti > .03.

3. EigenTrust run separately on each of the dense subgraphs, with recommended borrowers being the
union of the recommended borrowers selected from each subgraph. We assume that algorithms such
as DenseSubgraphs() or ExtractComponent() could be used to identify these subgraphs before Eigen-
Trust is run, though we did not run them explicitly. Note that as with Global EigenTrust, we used a
value of ε = .001 and that we lent only to borrowers with a global trust score of ti > .03. Visual
representations of these subgraphs can be found in 2.

In addition, we ran simulations with every possible combination of the following parameters:

1. Underlying rate of creditworthy borrowers, pCW , with values of 0.5, 0.8, and 0.95

12

(a) Complete graph. (b) Bipartite graph.

Figure 1: We used the above two graphs in our experiments. Graph (a) is comprised of three complete
graphs of 10 nodes each, and six connecting edges that are manually added between the subgraphs. Graph
(b) is similarly comprised of three bipartite graphs (p = 0.9) of 10 nodes each, then we add three connecting
edges between subgraphs S2 and S3 as well as S3 and S1, but only one connecting edge between S1 and S2
(to keep things interesting).

(a) Complete subgraphs (b) Bipartite subgraphs

Figure 2: The subgraphs used in our experiments.

2. Conditional probabilities of recommenders giving the correct response. We simulated with two pairs
of values, Pr(recij = CW |bj = CW) = .95, P r(recij = CW |bj = CW) = .05 and Pr(recij =
CW |bj = CW) = .8, P r(recij = CW |bj = CW) = .2

3. Proportion of population selected as initial recommenders (selected randomly from CW members of
population): pinit ∈ {.1, .2}

This gives 72 different simulation settings. We ran each one ten times and reported the average values of
these ten repetitions.

Performance indicators we measured include:

1. Cost

2. Number of rounds to convergence

13

Figure 3: An example of the Recommender-Guided Graph Discovery algorithm. The node number is indi-
cated in parenthesis, followed by the steps taken to reach the node, and the label below shows whether the
node is creditworthy or not. The number of steps is also shown in the color of the nodes. Here, we start at
node b2, which recommends nodes b0 and b3 to visit next.

3. False-positive rate

4. Percentage of CW borrowers discovered

Our code is available online: https://github.com/nouyang/cs223_creditgraphs.

5.2 Results
The full results are rather extensive, and we report them in the Appendix [7]. Here we report on several
interesting results arising from the simulation.

5.2.1 False Positive Rate

We found that the false positive rate for the Graph Discovery algorithm closely followed the theoretical
levels which ranged from .01 to .1. The false positive rate was consistently lower for Global EigenTrust,
and somewhat erratic for Local EigenTrust.

Figure 4: False positive rate for our three algorithms vs. theoretical graph discovery rate for complete graph.

14

https://github.com/nouyang/cs223_creditgraphs

Figure 5: False positive rate for our three algorithms vs. theoretical graph discovery rate for bipartite graph.

5.2.2 Rounds to Convergence

The number of rounds to convergence represents the number of lending cycles in the Graph Discovery
algorithm, and the number of times the normalized ratings matrix had to be multiplied by itself in the
Global and Local EigenTrust algorithms. The values were moderate for Graph Discovery, high for Global
EigenTrust, and very low for Local EigenTrust.

Algorithm Connected Graph Bipartite Graph
Graph Discovery 2.65 4.08

Global EigenTrust 83.48 467.61
Local EigenTrust 1.00 1.01

Table 1: table caption

5.2.3 Percent of Creditworthy Borrowers Discovered

The Graph Discovery algorithm discovered between 50% and 95% of creditworthy borrowers, with a pos-
itive correlation between the underlying percentage of creditworthy borrowers and the percent discovered.
Global EigenTrust is much better, and Local EigenTrust discovers 100% of creditworthy borrowers nearly
every time.

15

Figure 6: Percent of creditworthy borrowers discovered for our three algorithms for complete graph.

Figure 7: Percent of creditworthy borrowers discovered for our three algorithms for bipartite graph.

5.3 Discussion
Graph Discovery and Global EigenTrust were fairly robust to false positives, while Local EigenTrust had
high false positives, especially in the low overall creditworthiness scenarios. For Graph Discovery, this is
almost entirely dictated by recommender skill, while in the EigenTrust cases, this is a calibration of the
threshold global trust score for lending. The tradeoff that the system designer can make is between lending
more liberally and detecting all creditworthy borrowers versus being more conservative and lowering false
positives.

The runtime is much better for Graph Discovery and Local EigenTrust than Global EigenTrust. This is
due to having multiple "particles" in the case of Graph Discovery and the small subgraph size in the Local
EigenTrust case. In the real world, it is not clear that this would matter, and we also need to investigate how
these runtimes would scale with increasing graph size.

16

6 Conclusion and Next Steps
Suggested next steps would include algorithmic and/or analytical results that give precise bounds for ques-
tions 1 and 4 in Section 4.3. As mentioned in [PDS09], it would be interesting to run simulations where
we consider borrowers on a non-binary (continuous, normalized) scale in the social network and see how
results change for all 3 algorithms.

Further work could include tuning our algorithms, which are sensitive to the initial percentage of creditwor-
thy borrowers and how many of those are randomly chosen as seeds by the bank, to become more robust
and predictable in behavior under these parameters. In fact, a precise bound on question 2 in Section 4.3
could be obtained by answering the previous question.

References
[Cab19] Lídia Cabral. Tractors in africa: Looking behind the technical fix. 2019.

[FPK01] Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

[GKT05] David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense subgraphs in
massive graphs. In Proceedings of the 31st international conference on Very large data bases,
pages 721–732. VLDB Endowment, 2005.

[Gol84] Andrew V Goldberg. Finding a maximum density subgraph. University of California Berkeley,
CA, 1984.

[HRH18] Reshmaan Hussam HBS, Natalia Rigol, and Benjamin Roth HBS. Targeting high ability
entrepreneurs using community information: Mechanism design in the field. 2018.

[HU73] John E. Hopcroft and Jeffrey D. Ullman. Set merging algorithms. SIAM Journal on Comput-
ing, 2(4):294–303, 1973.

[Kho06] Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM Journal on Computing, 36(4):1025–1071, 2006.

[KSGM03] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In Proceedings of the 12th international confer-
ence on World Wide Web, pages 640–651. ACM, 2003.

[MMM+13] Pushkar Maitra, Sandip Mitra, Dilip Mookherjee, Alberto Motta, Sujata Visaria, et al. Agent
Intermediated Lending: A New Approach to Microfinance. Monash Univ., Department of
Economics, 2013.

[NSC+08] Amit Anil Nanavati, Rahul Singh, Dipanjan Chakraborty, Koustuv Dasgupta, Sougata
Mukherjea, Gautam Das, Siva Gurumurthy, and Anupam Joshi. Analyzing the structure and
evolution of massive telecom graphs. IEEE Transactions on Knowledge and Data Engineer-
ing, 20(5):703–718, 2008.

[PDS09] Sharon Paradesi, Prashant Doshi, and Sonu Swaika. Integrating behavioral trust in web service
compositions. In 2009 IEEE International Conference on Web Services, pages 453–460. IEEE,
2009.

[PMDC14] Dimitris Papailiopoulos, Ioannis Mitliagkas, Alexandros Dimakis, and Constantine Carama-
nis. Finding dense subgraphs via low-rank bilinear optimization. In International Conference
on Machine Learning, pages 1890–1898, 2014.

17

[Pri57] Robert Clay Prim. Shortest connection networks and some generalizations. The Bell System
Technical Journal, 36(6):1389–1401, 1957.

[PS16] David C Parkes and Sven Seuken. Economics and computation. Book in preparation, 2016.

[SM04] David Smith and Lang Moore. The sir model for spread of disease-the differential equation
model. Journal of Online Mathematics and its Applications, 2004.

18

7 Appendix
Attached below are Excel screenshots that explain all parameters that were measured while running all 3
algorithms we tested. More specifically, each column corresponds to a metric we measured on each of the 2
graphs.

The following are abbreviations:

1. pCW: Reflects the percentage of total number of users in the network that are creditworthy.

2. pinit: Reflects the percentage of users that were initialized as the number of credit worthy lenders.

3. ALG1: Refers to Algorithm 4.

4. ALG2: Refers to Algorithm 6.

5. ALG3: Refers to Algorithm 7.

19

Figure 8: Complete data for Algorithms 1, 2 & 3 on Graph 1

20

Figure 9: Complete data for Algorithms 1, 2 & 3 on Graph 2

21

	Motivation
	Introduction
	Notation & Definitions
	Problem Definition & Contribution
	Design Choices

	Related Work
	EigenTrust
	k-Dense Subgraphs
	Discovering Dense Subgraphs in Massive Graphs
	Graph Exploration Models
	Bayesian Trust - Integrating Behavioral Trust in Web Service Compositions

	Our Formulation
	Recommender-guided graph discovery
	EigenTrust
	Analytical / Theoretical Questions

	Simulation
	Setup
	Results
	False Positive Rate
	Rounds to Convergence
	Percent of Creditworthy Borrowers Discovered

	Discussion

	Conclusion and Next Steps
	Appendix

